
AFRL-IF-RS-TR-2006-203
Final Technical Report
June 2006

MACHINE LEARNING FOR THE KNOWLEDGE
PLANE

Oregon State University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. Q274

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2006-203 has been reviewed and is approved for publication

APPROVED: /s/

 ALAN J. AKINS
 Project Engineer

 FOR THE DIRECTOR: /s/

 WARREN H. DEBANY Jr., Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Jun 03 – Dec 05
5a. CONTRACT NUMBER

5b. GRANT NUMBER

F30602-03-2-0191

4. TITLE AND SUBTITLE

MACHINE LEARNING FOR THE KNOWLEDGE PLANE

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
Q274

5e. TASK NUMBER
KN

6. AUTHOR(S)

Thomas Dietterich, Brandon T. Harvey, Drake Miller, David
Jones, Aaron Gray, Alan Fern and Prasad Tadepalli

5f. WORK UNIT NUMBER
OW

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Oregon State University
15th and Jefferson
Corvallis OR 97331

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFGA
3701 N. Fairfax Dr 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-203

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA 06-413

13. SUPPLEMENTARY NOTES
AFRL Project Engineer: Alan Akins, IFGA, Alan.Akins@rl.af.mil

14. ABSTRACT
In 2003, Dave Clark (MIT) proposed a new abstract internet layer called the Knowledge Plane (KP) whose purpose is to support
network applications—such as general fault management, self configuration, and performance management—that require
distributed, self-aware cognitive processing. The heart of this idea is to combine techniques from machine learning with new
architectural concepts in networking to make the internet self-aware and self-managing. This will require revolutionary advances in
both statistical learning methods and network protocol design and implementation. We performed pilot work on the machine
learning portion of the Knowledge Plane. This consisted of three components: (a) we wrote a document formulating the various
learning tasks that will arise within the Knowledge Plane and within KP applications, (b) we worked with networking researchers to
design several KP scenarios for purposes of developing a new DARPA-funded KP program, and (c) we participated in DARPA
working meetings and planning workshops to help finalize the proposed KP program.
15. SUBJECT TERMS
Knowledge Plane, cognitive processing, machine learning, self-aware networking, self-managing networking

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Alan Akins
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

66

19b. TELEPONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

i

Phase 2 Abstract
Most machine learning research has focused on problems where training data is

abundant and learning amounts to searching for statistically justified regularities in the
data. When data is extremely limited, perhaps a single training example, such learning
strategies are simply not applicable. In such cases, the only hope for robustly learning is
to leverage prior knowledge sources in order to draw justified generalizations. This report
describes a pilot study conducted at Oregon State University, where we consider such a
learning setting in the domain of furniture assembly. In particular, the goal is for our
learner to observe a single assembly demonstration and then, by interacting with rich
knowledge sources, output an assembly plan that generalizes to new situations. For this
problem, example knowledge sources include a physical simulator and configuration-
space planner, among others. Such a system could then be used in the field to teach
and/or assist others to perform the assembly task. From a scientific perspective, our study
highlights capabilities that a general “knowledge based” learner would need to have in
order to solve our problem and others like it. From an application perspective, our study
provides an architecture and partial implementation of an assembly task learner,
highlighting the main technical barriers. In addition, we provide a user study showing the
potentially large benefit that such a system would have on assembly time.

ii

Table of Contents

Phase 1: Machine Learning for the Knowledge Plane: Technology Assessment and
Research Scenarios ... 1

1. Introduction... 1

2. Methods and Procedures ... 1

3. Results and Discussion ... 3

3.1 Technology Assessment Document.. 3

3.2 BGP Prepending Typo Scenario ... 5

3.3 DNS Diagnosis Study ... 6

4. Conclusions... 7

Phase 2-Part 1: Machine Learning for the Knowledge Plane: Technology Assessment and
Research Scenarios II.. 8

1. Introduction... 8

1.1 Hypotheses.. 9

1.2 Deliverables .. 9

2. Methods and Procedures ... 10

2.1 DNS related references: .. 10

2.2 Configuration Modeling and Decision Processing references.. 10

2.3 Description logic references ... 10

2.4 Agent architecture references ... 11

2.5 Logging and monitoring references.. 11

3. Hypothesis Testing.. 11

3.1 Hypothesis 1: Model-based reasoning can be extended to support monitoring and
diagnosis of DNS problems. ... 12

3.2 Hypothesis 2: A distributed system of model-based reasoning agents can be
coordinated to support distributed monitoring and diagnosis of DNS problems. 13

4. Deliverables .. 14

4.1 DNS ontology: A machine understandable and explicit representation of the
conceptual layer to facilitate higher-level representation of DNS settings. 15

4.2 DNS configuration model: A representation of the space of legal and illegal
configurations of a DNS server. ... 15

iii

4.3 DNS structural model: Topology of a domain name system in terms of
interconnected DNS servers and the interactions among them. ... 15

4.4 DNS Behavior Model: Logical representation of how a DNS server works and
evolves over time according to different parameter settings. ... 17

4.5 DNS Symptom Database .. 18

4.6 Tool for Reconfiguration of DNS Settings ... 18

4.7 Diagnostic Agent .. 18

5. Conclusions... 20

6. Reference Information .. 20

6.1 Diagnostic Agent .. 20

6.2 Symptom – Fault Table... 21

Phase 2-Part 2: Learning Generalized Task Knowledge from Demonstration and
Question Answering.. 22

1. Introduction... 22

2. Pilot Study Domain... 23

3. System Overview.. 24

3.1 Motion Capture ... 24
3.2 Annotation... 24
3.3 Learning Component .. 25

4. System Details .. 26

4.1 Motion Capture ... 26
4.2 Generating Feasible All-Policies Graph ... 28
4.3 Assessing Difficulty of Plan Steps.. 30

5. Results of User Study.. 31

6. Summary and Conclusions ... 32

Appendix A: Fault-Table Diagnosis for DNS .. 34

Appendix B: Machine Learning for Cognitive Networks: Technology Assessment and
Research Challenges ... 36

Bibliography ... 57

List of Figures

Figure 1 - DNS error diagnosis flow... 13
Figure 2 - DNS Hierarchy... 16
Figure 3. - Diagnostic Agent... 20
Figure 4. - The Z-Line 2 Drawer Deluxe Cherry Vertical File... 23
Figure 5. - (a) Depiction of assembly of main frame. (b) Depiction of assembly of
drawer. (c) Final step of placing drawer in main frame.. 24
Figure 6. - System architecture of the assembly task learner. .. 25
Figure 7. - Depiction of knowledge sources used by learner.. 26
Figure 8. - (a) Cabinet parts laid out at the start of a motion capture session. (b) A
depiction of the data recorded by the motion capture system. Each part has three markers,
which are shown as the vertices of the triangles in the figure. ... 27
Figure 9. - (a) The symbolic annotation of a key frame of the motion capture. (b)
Depiction of internal model of key motion capture frame. The internal representation is
based on the provided part model, rather than the raw motion capture data. 28
Figure 10. - The complete state-space graph for the drawer assembly. Here the dark edges
correspond to the sides of the drawer and the blue area corresponds to the bottom of the
drawer. Arrows correspond to the addition of one part to the assembly. Note that some
arrows do not correspond to physically possible actions. One of the learner’s objectives is
to rule out such arcs. ... 29
Figure 11. - The lower plan step is infeasible due to the fact that the bottom panel cannot
be inserted when all four sides of the drawer are attached. The C-Space planner can be
used to determine that the planning step is physically impossible. The top arc corresponds
to a physically realizable action. Accordingly the C-Space planner determines that this is
the case by computing a plan for attaching the fourth side onto the drawer. 30
Figure 12. - The final all-policies graph after pruning according topological constraints.
The left-bottom plan shows the graph for assembling the drawers. The right-bottom plan
shows the graph for assembling the cabinet frame. The green-bold arcs show the
observed path from the demonstration.. 30
Figure 13. - Weighted all-policies graph for the drawer assembly. The arc weights
indicate the difficulty of the planning step and are based on simulating the stability of the
partial assemblies. ... 31
Figure 14 - . Relationship between learning, performance, knowledge, and the
environment. ... 37
Figure 15 - : Time axis model of incident prevention, detection, and response tasks. 47

List of Tables

Table 1: Fault Table .. 21
Table 2: Summary of user study results.. 32
Table B1: Summary of Machine Learning Problem Formulations 44
Table B2: Configuration tasks in increasing order of complexity.................................... 49

iv

1

Phase 1:
Machine Learning for the Knowledge Plane: Technology

Assessment and Research Scenarios

1. Introduction
In 2003, Dave Clark (MIT) proposed a new abstract internet layer called the

Knowledge Plane (KP) whose purpose is to support network applications—such as
general fault management, self configuration, and performance management—that
require distributed, self-aware cognitive processing. The heart of this idea is to combine
techniques from machine learning with new architectural concepts in networking to make
the internet self-aware and self-managing. This will require revolutionary advances in
both statistical learning methods and network protocol design and implementation.

To explore this idea further and develop it into a DARPA program, several groups of

researchers were recruited to perform a seedling study. We were one of those groups.
Our contribution to the seedling study was threefold. First, we co-authored a technical
report reviewing the current state of the art in machine learning and assessing the
appropriateness of machine learning techniques for the Knowledge Plane. Second, we
studied the problems currently confronting the internet, both at the edge of the network
(where end users operate) and also in the center of the network (where internet service
providers operate and interact). We studied methods for diagnosing networking
problems. We spent considerable time studying a scenario developed by Jennifer
Rexford in which a routing problem is introduced by one ISP when they make a
typographical error in their Border Gateway Protocol (BGP) routing tables. Finally, we
conducted a detailed study of the internet Domain Name System and the ways in which it
can be misconfigured, and we studied methods for applying learning and model-based
reasoning to diagnose DNS problems.

2. Methods and Procedures
For our review report, Pat Langley and I studied existing articles in the machine

learning literature (several of which we originally wrote) to identify existing work that
would be relevant to the Knowledge Plane concept. We also performed thought
experiments to develop ideas for how machine learning methods could be useful for the
KP.

For our general study of internet problems and diagnosis approaches, we read several

papers recommended by other seedling researchers, particularly Jennifer Rexford. These
included the following papers:

Labovitz, C., Ahuja, A., Jahanian, F. (1998). Experimental Study of Internet Stability
and Wide-Area Backbone Failures. Tech Report CSE-TR-382-98. Department of
Electrical Engineering and Computer Science, University of Michigan.

Feamster, N., Winick, J., Rexford, J. (unpublished manuscript) BGP emulation for
domain-wide route prediction. Shared with us by J. Rexford.

2

Williams, B. C., Ingham, M. D., Chung, S. H., Elliott, P. H. (2003). Proceedings of
the IEEE: Special Issue on Modeling and Design of Embedded Software, 91(1),
212-237.

Akinci, B., Fischer, M., Levitt, R., Carlson, R. (2000). Formalization and
automation of time-space conflict analysis. CIFE Working Paper 59. Center for
Integrated Facility Engineering, Stanford University.

Our work on model-based diagnosis for the Domain Name System, we read the

following books and papers:
Abbey, J. Mulvaney, M. Ganymede: An Extensible and Customizable Directory

Management Framework. Proceedings of the 12th Systems Administration
Conference (LISA'98). 1998.

Albitz, P., Liu, C. DNS and BIND. O'Reilly. April, 2001.
Barham, P., Isaacs, R., Mortier, R., Narayanani, D. Magpie: online modelling and

performance-aware systems. Proceedings of 9th Workshop on Hot Topics in
Operating Systems (HOTOS IX). 2003.

Brownlee, N., Claffy, kc, Nemeth, E. DNS Measurements at a Root Server.
Proceedings of the IEEE 2001 Global Telecommunications Conference. IEEE,
2001.

Chen, C.S., Tseng, S.S., Liu, C.L., Ou, C.H. Building a DNS Ontology using
METHONTOLOGY and Protégé-2000. Proceedings of the 2002 International
Computer Symposium (ICS2002) Workshop on Artificial Intelligence.

Chen, M., Kiciman, E., Fratkin, E., Brewer, E., and Fox., A. Pinpoint: Problem
determination in large, dynamic, Internet services. Proceedings of International
Conference on Dependable Systems and Networks (IPDS Track), pages 595-604,
2002.

Danzig, P., Obraczka, K., Kumar, A. An Analysis of Wide-Area Name Server
Traffic. Proceedings of the ACM SIGCOMM'92 Conference. ACM, 1992.

Giap, C. S., Kadobayashi, Y., Yamaguchi, S. Zero Internet Administration
Approach: the case of DNS. Proceedings of the 13th International Conference on
Information Networking (ICOIN'98), January 21-23, 1998.

Harvey, B. DNS Installation and Configuration. Tech Report. 2003
Huck, P., Butler, M., Gupta, A., Feng, M. A Self-Configuring and Self-

Administering Name System with Dynamic Address Assignment. ACM
Transactions on Internet Technology, Vol. 2, No. 1, February 2002, Pages 14-46.

Koller, D., Levy, A., and Pfeffer, A. P-CLASSIC: A tractable probabilistic
description logic. In Proceedings AAAI-97, pages 390–397, 1997.

Langfeldt, N. Troubleshooting DNS. Chapter 6 of The Concise Guide of DNS and
BIND. QUE, 2001.

Lewis, L. Managing Computer Networks, A Case-Based Reasoning Approach.
Artech House. 1995

Ogle, D. et al. Canonical Situation Data Format: The Common Base Event. October,
2003.

We then configured a set of four computers to mimic the top levels of the DNS

hierarchy and to mimic end-user computers at the edge of the DNS hierarchy. This

3

helped us to understand better how the DNS works. We then performed experiments on
this mock-up network in which we injected misconfiguration faults and observed the
resulting symptoms in the network.

With the help of the network administrators at Oregon State University, we

monitored all outgoing DNS queries from Oregon State University for a week and
analyzed this data. We applied various DNS tools to analyze the DNS configuration at
Oregon State.

3. Results and Discussion

3.1 Technology Assessment Document
Working with Pat Langley, we wrote and delivered a document entitled “Machine

Learning for Cognitive Networks: Technology Assessment and Research Challenges”
(attached as Appendix B). This document described the following problem formulations
studied in the machine learning literature:

1. Learning for classification and regression. The goal here is to predict some
value y given some input object x. A related goal is to predict the rest of x given
some part of x. A third formulation is to predict the probability P(x) of a given
event x.

2. Learning for planning and acting. This includes iteratively picking an action a
to execute given the observed current state s of the environment and some overall
goal. A second formulation involves choosing a sequence <a1, a2, …, an> of
actions given the starting state and the goal. A third formulation is to find some
state s that optimizes an objective function J(s).

3. Learning for interpretation and understanding. The goal here is to parse a
data stream into a tree-structured set of events or activities.

Our paper also reviewed several problem solving tasks that could arise in the area of
cognitive networking. These included the following:

1. Anomaly detection and fault diagnosis. The central task of the knowledge
plane is to detect anomalies and faults. Machine learning methods can be applied
to learn what “normal” network configurations, network traffic, etc. look like and
thereby detect anomalous network traffic. For fault diagnosis, supervised
machine learning could be applied to learn rules mapping from sets of symptoms
to possible causes. Alternatively, learning could be applied to learn explanatory
or causal models to explain how faults lead to the observed symptoms or
anomalies. Finally, diagnosis often requires making active probes or
measurements (e.g., injecting traffic into a network to see how it responds).
Machine learning could be applied to learn the background probabilities of
different faults, the cost of different probes, and the probability that a particular
fault gives rise to a particular probe outcome.

2. Responding to intruders and worms. Intrusion and worm detection can be
divided into two tasks: (a) recognizing known intrusion exploits and worms and

4

(b) detecting new intrusion methods and new worms. Task (a) is an instance of
learning for interpretation: the system must learn to detect the sequence of events
corresponding to an intruder or worm, even if they are mixed together with other
events intended to mask the intrusion. Task (b) is another instance of anomaly
detection.

3. Network configuration and optimization. We identified a spectrum of
configuration and optimization tasks ranging from simple parameter selection
through compatible parameter configuration, topological configuration, and
component selection and configuration. Aside from simple parameter selection,
there has been little machine learning research on these problems.

The conclusion from this study was that while existing machine learning methods
could be of great help in detecting and diagnosing problems, the problem of learning for
configuration and optimization is an important direction for future research. Hence, two
DARPA programs are conceivable. One program would fund research on adapting
existing machine learning methods to problems of anomaly detection, fault diagnosis, and
intrusion detection. A second program could fund research on new learning algorithms
for configuration and optimization.

The report identified additional research challenges for machine learning arising out
of the Knowledge Plane domain. These included the following:

1. Making machine learning more autonomous. Existing learning methods rely
on careful engineering of the representation, the choice of algorithm, and so forth.
The knowledge plane requires a more autonomous learning capability that can
operate in real time without continuous knowledge engineering.

2. Learning online. Most existing learning methods learn off-line from data
collected in advance. The knowledge plane requires learning online from data
gathered from the “live” internet.

3. Learning in changing environments. Existing learning methods assume that the
mapping from inputs to outputs is fixed and not changing over time. However,
network conditions in the internet are changing rapidly in response to the growth
of the size of the network, the amount and type of traffic in the network, and the
active attempts of intruders to elude existing counter-intrusion tools.

4. Distributed learning. Existing learning methods are centralized. All data is
collected, pooled in a central location, and then analyzed by the learning
algorithms. The Knowledge Plane requires distributed learning both because of
the sheer size of the network and also because data may be proprietary or private,
so it cannot be shared in a central location.

5. Knowledge-rich learning. Existing learning methods are knowledge-lean. The
Knowledge Plane requires methods that can exploit existing knowledge about
internet protocols and management policies rather than having to rediscover these.

6. Learning declarative models. A natural direction to explore for analysis and
configuration of the internet is model-based programming. These techniques
were developed by NASA for the Deep Space One mission, in which a space craft
was controlled autonomously by an on-board diagnosis, repair, and scheduling

5

system. An important direction for future research is to develop methods for
learning the kinds of models required for model-based diagnosis and
configuration.

3.2 BGP Prepending Typo Scenario
Working with Jennifer Rexford (AT&T) we developed a scenario for diagnosing a

BGP prepending typo misconfiguration. The BGP protocol is used to control the high-
level routing of packets in the internet. The internet is divided into regions called
Autonomous Systems (ASes). Each AS has a number, and a path through a sequence of
ASes is represented by a sequence of AS numbers. Each AS uses the BGP protocol to
advertise ranges of internet addresses to which it can deliver packets (directly or
indirectly). Each advertisement consists of an IP address range and a sequence of AS
numbers describing the path along which packets will be sent to reach those IP addresses.
Unfortunately, the Border Gateway Protocol does not provide a way to indicate the “cost”
of sending packets along an AS path. The only measure of the cost of a path is the
number of AS numbers in the path. One way to signal that a path exists but is expensive
is to “prepend” an AS number multiple times. For example, Autonomous System
number 43 might advertise that it can reach IP address range 55.22.*.* by following the
path 43 43 43 43 2332 5591. The four 43s are used to make this path artificially long
(and therefore, encourage the packets destined for 55.22.*.* to take a different route).
Prepending requires manual editing of a configuration file on the border gateways, and a
typographical error can result in paths that cannot reach the indicated addresses. So for
example, if “43” were mistyped as “34”, the AS path would become 34 34 34 43 2332
5591, which would send the packet to AS 34 which might not be able to reach 55.22.*.*.
This results in lost packets and a cascade of potential failures.

To diagnose a prepending error, it is necessary to compare advertised paths with the
known connectivity of the internet. For example, if AS 34 is not directly connected to
AS 43, then this means the path is bad. There is no central authoritative “map” of
internet connectivity. Instead, there are some internet resources, such as routeviews.org,
which collect BGP advertisements and analyze them to construct a connectivity map.
Consulting routeviews.org for each routing decision is not feasible, so a method is needed
for detecting routing problems, identifying cases in which prepending typos may be the
cause, and then verifying them at routeviews.org. We developed a scenario that
described the sequence of inferences that would need to occur including the sequence of
passive and active probes or data measurements that would need to be made.

We drew three conclusions from this study. First, model-based reasoning is an

important method for diagnosing routing problems. When diagnosing BGP problems,
Dr. Rexford clearly applies a very strong model of how BGP works and how network
administrators enforce routing policies. Second, existing model-based methods are not
adequate for reasoning about the internet, because they assume that the structure
(“anatomy”) of the system is fixed during diagnosis, whereas the structure of the internet
is unknown and changing rapidly. A third conclusion is that while machine learning
could contribute to making diagnosis more efficient, it is not the key technology for
advancing the Knowledge Plane. Instead, it seems that model-based diagnosis, suitably

6

extended, will be the key to performing rapid, reliable diagnosis of internet
misconfigurations.

3.3 DNS Diagnosis Study
In consultation with Bob Braden and Ted Faber of ISI, we performed a detailed

study of approaches for diagnosis DNS misconfigurations. The goal of this study was to
assess how well existing methods of diagnosis could be applied to a relatively simple part
of the internet protocol suite. The Domain Name System (DNS) is a distributed set of
millions of servers that is responsible for mapping symbolic domain names (e.g.,
www.yahoo.com) into internet protocol (IP) addresses, such as 216.109.118.71.

To study the Domain Name System, we configured a set of four computers in our lab

(isolated from the real internet) to implement a version of the top level of the DNS
including the root DNS servers, the top-level domains, the second-level domains, and
some ordinary end-user machines. We then wrote scripts to inject various kinds of
configuration faults into this miniature internet. The configuration faults were based on
faults listed in standard DNS textbooks and how-to manuals. For each fault, we
identified a set of symptoms that it creates, and we built a fault-symptom table (see
Appendix A). One of the questions we sought to answer was whether it would be
possible to build a fault-symptom table or whether the relationship between faults and
symptoms is so complex and dynamic that a model-based approach is required. Our
tentative conclusion is that for diagnosing standard DNS faults, a model-based approach
is not required. A model-based approach might still be desirable because (a) models are
easier to maintain over time than fault tables and (b) models can give useful explanations
to the user about how the fault causes the symptoms, whereas the fault table does not
represent this information.

Our conclusion that fault tables might be sufficient is preliminary, because we ran

out of time and money before we had finished our experiments. In particular, the
following steps still need to be performed to verify our preliminary conclusions:

1. Finish building the “miniature internet”. Our miniature internet does not
currently support second-level domains, nor does it include dynamic DNS.

2. Finish writing the “fault injection” scripts to inject all known faults.

3. Build an infrastructure for parsing log files and performing active measurements
(probes).

4. Build an automated diagnostic system to diagnose these faults. This system
would use the DNS fault table that we have constructed by hand. If it can
correctly diagnose all of the faults we inject, then that would support our claim
that a simple fault table is sufficient for DNS diagnosis.

While performing this study, we noticed another issue that could be important to
explore. When a DNS server answers a query (e.g., “What is the IP address for
yahoo.com?”), it provides an IP address (216.109.118.71) and a Time-To-Live (TTL) that
specifies how long it is safe to cache this IP address. Typical TTL values are 1-3 days.
During this time, if the user needs the IP address of yahoo.com, he can obtain it from the

7

cache (which is typically stored on the user’s own computer and also on DNS servers
within the campus, firm, or ISP). After the TTL expires, the user’s computer must again
make a DNS query to determine the IP address. This query typically goes to one of the
root name servers (of which there are only a small number, worldwide). We noticed that
several internet sites are using very small TTLs (on the order of 5 minutes). We
speculate that they are doing this for load-balancing, since they can change the mapping
from domain names to IP addresses dynamically every 5 minutes. But a side-effect of
this policy is that they are creating a heavy load on the root domain name servers. This
could be slowing down all domain name lookups worldwide. It would be interesting to
measure this and see whether it is effectively a form of “cost shifting” where these
internet sites are shifting the cost of load balancing onto the users of the internet.

4. Conclusions
We review the main conclusions of our seedling study here.

First, we determined that existing machine learning techniques could be directly
adapted to address problems in anomaly detection and diagnosis. Further research would
be needed to develop new techniques suitable for configuration and optimization of
network parameters.

Second, we determined that model-based reasoning methods have potential for
supporting the kinds of reasoning required by the Knowledge Plane, particularly in the
complex BGP prepending scenario. For such scenarios, it is difficult to imagine a fixed
fault table that could predict all of the symptoms that could result from a prepending
error.

Third, we reached the preliminary conclusion that model-based reasoning is not
required for diagnosing DNS faults. Instead, we believe that a fault table would be
sufficient. However, we were not able to complete the implementation of a diagnostic
system based on fault tables to verify this conclusion.

8

Phase 2-Part 1:
Machine Learning for the Knowledge Plane: Technology

Assessment and Research Scenarios II

1. Introduction

Since June 2003, we have been carrying out seedling research to assess the potential benefits
and technical feasibility of a DARPA-funded effort in cognitive networking. The goal of
cognitive networking is to enable the Internet (both the commercial Internet and also mission-
centered military networks) to become self-configuring, self-diagnosing, and self-tuning so that
the network is more efficient, more reliable, and responds better to unanticipated problems. Our
initial research efforts have focused on identifying the relevant ideas and technology within
cognitive systems and computer networking research. The conclusions of our initial efforts are
the following:

1. The most promising fundamental technology for cognitive networking is model-
based monitoring and diagnosis. The central feasibility question for cognitive
networking is whether model-based monitoring and diagnosis can be extended to
deal with the dynamics of the Internet.

2. An untapped source of power for Internet monitoring and diagnosis is the

capability of vast numbers of computing devices to pool their observations to
rapidly localize, diagnose, and repair problems. A central feasibility question for
cognitive networking is whether there is a way to harness distributed problem
reports to perform rapid localization and diagnosis, or whether the cost of
managing this information is too great to make it useful.

3. A potential advantage of cognitive networking would be the ability of the Internet

to tune itself automatically to meet the missions of different local parts of the
Internet. A central question for cognitive networking is whether it is feasible and
worthwhile to have sub networks tune their configuration and communication
protocols automatically to support mission-specific goals.

In this report, we provide a summary of our recent effort into study the three questions

above, bearing on the feasibility of cognitive networking. To focus our study, we have chosen
to investigate whether model-based technique can be used to diagnose problems in the current
Domain Name System (DNS) in a distributed manner. In particular, we have built an
experimental test bed and designed a set of algorithms to test the following hypotheses as
proposed in 2003.

9

1.1 Hypotheses

A. Model-based reasoning can be extended to support monitoring and diagnosis of DNS
problems.

B. A distributed system of model-based reasoning agents (diagnostic agent) can be
coordinated to support distributed monitoring and diagnosis of DNS problems.

C. Problem reports aggregated from end-user computers can reduce or eliminate the need
for diagnostic agents to make active probes during diagnosis.

D. Feedback provided by diagnostic agents can guide the automatic tuning of DNS
parameters to meet local mission-specific goals.

1.2 Deliverables

A. DNS ontology: A machine understandable and explicit representation of the conceptual
layer that will facilitate a higher-level representation of DNS settings enabling the
application of high-level reasoning techniques.

B. DNS configuration model: A representation of the space of legal and illegal
configurations of a DNS server.

C. DNS structural model: Topology of a domain name system in terms of interconnected
DNS servers and the interactions among them. This model will cover the interactions
underlying the intended behavior model.

D. DNS behavioral model: Logical representation of how a DNS server works and evolves
over time according to different parameter settings.

E. DNS symptom database: A high level representation of inconsistencies between the
observed behavior and the predicted normal behavior of the system

F. A DNS sensor feed that allows the use of feedback provided by multiple endpoints to

improve diagnostic speed and accuracy.

G. A collection of DNS performance metrics in terms of associated traffic and cache
statistics.

H. A tool for the creation of reconfigurable DNS settings. This tool will provide a
collection of DNS scenarios to test our algorithms.

I. A set of distributed diagnosis algorithms. These algorithms will constitute diagnostic
agents' inner logic.

10

2. Methods and Procedures

To validate the above hypotheses, the research team comprised of Prof. Thomas G.
Dietterich, Prof. Thinh Nguyen, Brandon Harvey, Drake Miller, David Jones and Aaron Gray
read and studied existing articles from various fields of research in computer science. A list of
the referenced works is provided in sections 2.1 – 2.5.

2.1 DNS related references:

N. Brownlee, KC Clay, and E. Nemeth. Proceedings of the IEEE: DNS Measurements at a
root server. 2001 Global Telecommunications Conference, 2001.

Barr. RFC 1912: Common DNS Operational and Configuration Errors, 1996.

P. Beertema. RFC 1537: Common DNS Data File Configuration Errors, 1993.

R. Bush. RFC 2181: Clarification to the DNS specification, 1997.

P. Mockapetris. RFC 1034: Domain Names - Concepts and Facilities, 1987.

P. Mokapetris. RFC 1034: Domain Names - Implementation and Specification, 1997.

Pappas, V., Xu, Z., Lu, S., Massey, D., Terzis, A., Zhang, Lixia: Impact of Configuration

Errors on DNS Robustness. ACM SIGCOMM 2004, Portland, OR.

2.2 Configuration Modeling and Decision Processing
references

Heckerman, J. S. Breese, and K. Rommelse. Decision-theoretic troubleshooting.
Communications of the ACM, 38:49-57, 1995.

B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott. Model-based programming

of intelligent embedded systems and robotic space explorers. Proceedings of the IEEE:
Special issue on Modeling and Design of Embedded Software, 91(1):212-237, 2003.

2.3 Description logic references

McGuinness, J. R. Wright. An industrial strength description logic-based configurator
platform. IEEE Intelligent Systems, 13(4):69-77, 1998.

Jena, semantic web framework. http://jena.sourceforge.net

Deborah McGuinness, Franz Baader, Diego Calvanese, Daniele Nardi, and Peter Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, 2003.

Shelly Powers. Practical RDF. O'Reilly and Associates, 2003.

11

W3C, Deborah L. McGuinnes, and Frank van Harmelen. Owl web ontology language

overview. http://www.w3.org/TR/owl-features/.

Koller, A. Levy, and A. Pfefer. P-classic: A tractable probabilistic description logic. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-
97), 390-397, 1997.

2.4 Agent architecture references

Martin, E. Plaza, and J. A. Rodriguez. An infrastructure for agent-based systems: an inter-
agent approach. International Journal of Intelligent Systems, 15(3):217-240, 2000.

Martin, E. Plaza, and J. A. Rodriquez-Aguilar. Conversation protocols: Modeling and

implementing conversation in agent-based systems. In F. Dignum and M. Greaves,
editors, Issues in Agent Communication, pages 249-263. Springer-Verlag: Heidelberg,
Germany, 2000.

Applications, technologies, architectures, and protocols for computer communications,

pages 319-330, New York, NY, USA, 2004. ACM Press.

2.5 Logging and monitoring references

IBM. Common base events, http://www06.ibm.com/software/tivoli/features/cei/.

3. Hypothesis Testing

Our primary research focus is to provide an infrastructure that enables more conclusive and
continued research in the area of Cognitive Networking (COGNET). This infrastructure includes
(a) an experimental Domain Name System (DNS) running on our local network, (b) a set of
diagnostic agents, each agent residing on a different DNS server, and (c) an ontological
representation of DNS structure used by agents for model-based reasoning. Using this
infrastructure, our goal is to test the four hypotheses in Section 1.1. We have shown the first two
hypotheses to be plausible, and are in excellent position to test the final two hypotheses. These
final two hypotheses can be easily tested using the existing groundwork. We now discuss our
progress on testing the first two hypotheses.

12

3.1 Hypothesis 1: Model-based reasoning can be extended to
support monitoring and diagnosis of DNS problems.

To test this hypothesis, our investigation focuses on the delegation errors in DNS. Pappas

states that 15% of all DNS problems are due to delegation errors, which makes solving this
problem particularly useful. A delegation error occurs when a hostname is either added or
removed from one of the delegation points in a domain’s hierarchy without making subsequent
changes in the remainder of the tree. A delegation error can occur from the bottom up and from
the top down which is referred to as inconsistent/cyclic delegation and lame delegation,
respectively. Our initial results indicate that by modeling the DNS environment using an
ontological representation, these delegation errors can be systematically diagnosed using an
inference engine. In particular, we model the DNS environment using a Web Ontology Language
(OWL), and use the Jena reasoning engine to diagnose the delegation errors. Jena is a Java
framework for building semantic web applications. It provides a programmatic environment for
OWL and a rule-based inference engine. An ontological representation of a DNS environment
represents the relationships between different DNS servers and the properties within a DNS
server. While Jena’s reasoning engine can diagnose certain DNS errors using an ontology built
from the information at the local DNS server, it often requires information from other servers for
diagnosis of delegation errors. Hence, we have designed a set of diagnostic agents with each
agent residing on a different DNS server to exchange information for distributed diagnosis. This
architecture will be discussed in Section 3.1.

The model-based reasoning process works as follows. First, the diagnostic agent

collects the raw data such as the configuration and zone files from its name server and/or its
parents/children/master/slave in the DNS hierarchy. Thus, the agent’s communication is
currently limited to its neighborhood to reduce the bandwidth overhead. This data collection is
done periodically or triggered by an event, e.g. a “unreachable host” error or a “restart” event
recorded in the DNS log file. Second, the diagnostic agent processes the raw data into an RDF
model of the DNS server configuration. RDF is a high-level knowledge representation of data,
and is designed for easy semantic extraction and reasoning. Third, the diagnostic agent invokes
Jena’s inference engine to validate or infer any inconsistencies/errors between the OWL model
of the DNS error and the RDF model of the DNS server configuration (a snapshot of the current
configuration). The current OWL model is manually designed to represent different DNS
delegation errors. Jena’s inference engine generates a report elucidating any problems. Using
this report, the diagnostic agent determines whether any problem exists. If there is indeed a
problem, the diagnostic agent consults with the symptom-fault database for the cause and
remedy of the problem. Finally, the agent performs the suggested remedy. Figure 1
summarizes the model-based diagnosis process.

One of the benefits of this model-based reasoning approach is that errors can be

described in an abstract human and machine readable form. In addition, we leverage the
reasoning engine of Jena to systematically discover errors or combination of errors that might
be missed by experts due to the complexity of the DNS models.

13

Figure 1 - DNS error diagnosis flow

3.2 Hypothesis 2: A distributed system of model-based
reasoning agents can be coordinated to support distributed
monitoring and diagnosis of DNS problems.

To test this hypothesis, we have designed a set of agents with the capability to gather local
diagnostic information and to communicate with remote agents for information on remote DNS
servers. The inter-agent communication consists of passing well-defined message structures
using well-established protocols. The information contained in the diagnostic agent’s messages
consists of high-level models of a server’s configuration such as configuration and zone files, and
detailed information such as the percentage of failed requests of a particular DNS server during
the last hour. This information is then filtered for obvious errors. In particular, the configuration
and zone files are passed through a validation process that alerts the diagnostic agent about
invalid entries contained in these files. This validation process removes the majority of the human
contribution to DNS configuration errors. Next, the diagnostic agent uses Jena’s inference engine
to capture and diagnose the less obvious errors. Currently, our diagnostic agents can (a) validate
the configuration and zone files and (b) diagnose and correct simple delegation errors involving
multiple DNS servers. Based on our existing infrastructure, we can extend our current models to
include many more DNS errors and the corresponding algorithms for correcting or mitigating the
problems.

 We now describe a simple scenario that our diagnostic agents can automatically
coordinate to diagnose and correct the error. We first note that while the DNS errors can be
detected by any DNS server, the majority of errors must be corrected by a master DNS server

Data

collection

Remedy

Model-
based

reasoning

Process
into RDF

14

for the particular zone. A master DNS server is an authoritative server that distributes the zone
information to all its slave servers. The purpose of the slave servers is to reduce the workload
for the master server. Therefore, the majority of DNS errors are discovered by the agents
running on slave servers. However, the agents on slave servers cannot change the configuration
and zone files of the master server or of the other slave servers. Therefore, when an agent on a
slave server detects a potential problem, it must communicate this problem to the agent on the
master server. The agent on the master server then makes necessary changes to its master
configuration and zone files. It then broadcasts the new configuration and zone files to all its
slave servers to correct the problem.

For example, suppose the zone oregonstate.edu has three name servers NS1, NS2, and
NS3. NS1 is the master name server, while NS2 and NS3 are slave name servers. Suppose the
agent on NS2 detects a configuration error in its zone for eecs.oregonstate.edu and the error is
“Lame Server found on ghost.eecs.oregonstate.edu”. There are many possible causes for this
error, e.g. the removal of the server ghost.eecs.oregonstate.edu. Upon detecting this error, the
diagnostic agent on NS2 verifies the name servers assigned for eecs.oregonstate.edu in its own
configuration and then forwards the error to the agent on the master name server NS1 for
further diagnosis. The agent on NS1 is now responsible for correctly diagnosing the lame
server problem with ghost.eecs.oregonstate.edu and making the proper changes, e.g. removing
the entry ghost.eecs.oregonstate.edu as a name server. Once the proper changes are made at
NS1, the master agent then contacts the agents in the slave servers, NS2 and NS3, to notify
them that the changes have been made. Upon receiving the notification, the diagnostic agents
on the slave servers inform their DNS slave servers to perform a zone transfer to update their
configurations.

In designing the communication between the agents, our aim is to minimize the
bandwidth and the computational resource overhead. Therefore, the diagnostic agents employ
UDP protocol rather TCP. The UDP protocol reduces the bandwidth overhead as well as the
computational resource for transferring data between agents. However, UDP does not provide
transmission reliability between agents, i.e. it does not provide automatic retransmission of lost
packets. To overcome this disadvantage, the sending agent is responsible for retransmission of
the lost packets based on the response from the receiving agent. Furthermore, the diagnostic
agent is designed to minimize the number of critical messages that are sent. The
communications between diagnostic agents typically include information about their name
servers, configurations, and/or explicit instructions for successful diagnosis and correcting
problems by another agent.

4. Deliverables

Of the deliverables stated in Section 1.2 the following are complete: DNS Ontology, DNS
configuration model, DNS structure model, DNS behavior model, DNS symptom database, DNS
sensor feed, collection of DNS performance, reconfiguration tool, and a set of distributed
diagnostic algorithms. To summarize, we have either completed or have in place significant
foundation in all of the deliverables.

15

4.1 DNS ontology: A machine understandable and explicit
representation of the conceptual layer to facilitate higher-level
representation of DNS settings.

A method for creating high-level representations of the DNS settings has been created. We
are currently modeling the DNS settings through the use of the Resource Description Framework
(RDF) language. RDF allows us to use a statement to represent the settings in much the same
way that humans make statements about their observations of the world. For instance we can
make the statement that a particular server does not respond to queries. This statement has many
implications, one of which could be that there is an error in the configuration settings such as the
IP address of the server or the delegation list does not match from one server to the next.
Statements similar to the one above are the result of the diagnostic agent first performing routine
data collection on the server. The diagnostic agent then performs a minimal amount of pre-
processing of the data to extract additional meaning. The high-level data is then used to create an
ontology model, which either verifies through inference that the server is operating correctly or
determines that errors exist due to the symptoms that exist in the servers’ model.

4.2 DNS configuration model: A representation of the space of
legal and illegal configurations of a DNS server.

Two XML schema documents are used to describe the valid data contained in DNS
configuration and zone files. The information in the XML schemas describes in detail what form
the data should take such as the format, range and domain of acceptable values. Through the use
of a widely accepted technique of XML validation, simple human errors and malformed
configuration data are detected and reported for later use by the diagnostic agent.

The benefit to using the XML schema documents is three-fold. First, XML schemas are a
robust and widely used syntax for describing data from virtually any source. Second, XML
schemas are relatively easy to understand and learn. Finally, the schema documents are platform-
independent and can be extended to describe any type of configuration.

4.3 DNS structural model: Topology of a domain name system in
terms of interconnected DNS servers and the interactions
among them.

To conduct experimental research in DNS, we constructed an environment similar to the real
DNS. This experimental DNS environment is running on five Linux machines, and it allows us
to precisely control different parameters, e.g. DNS request rates and injected error rates. Our
design is similar to the design used by Wessels and Klaffy in their work on measuring the upper
DNS hierarchy.

16

Similar to the real DNS hierarchy, our DNS hierarchy consists of three fundamental

layers: The root servers, the top level domain (TLD) servers, and second level domain (SLD)
servers. These are described in more detail as follows:

 Root Servers: The root is denoted by a "." and the root servers are used only to direct
DNS queries to the proper Top Level Domains. There are 13 root servers, and they are
labeled alphabetically from a to m.

 Top Level Domain Servers: These servers are sets of servers that categorize the

Internet into comprehensible units. Examples of TLDs are “com”, “net”, “org”, “edu”.
For each top level domain, e.g. “com” or “net”, there can be a maximum of 13 name
servers.

 Second Level Domain: These name servers are servers maintained by corporations,

organizations and institutions. Examples of SLDs are google.com, nero.net,
oregonstate.edu. For each SLD, there can be 13 name servers that are considered
authoritative. These domains must be purchased and registered with Internet
Corporation for Assigned Names and Numbers (ICANN). Another key feature of the
SLDs is that they can contain sub-domains called delegation points. For instance
oregonstate.edu has the authority to delegate a sub-domain such as EECS. Once
delegated, EECS becomes its own authoritative domain underneath oregonstate.edu
and is referred to as eecs.oregonstate.edu.

Roots

(Machine: V1)

GSTLD
(Machine: v2)

NSTLD
(Machine: v2)

EDU
(Machine: v2)

NET
(Machine: v2)

COM
(Machine: v2)

GOOGLE.COM
(Machine: v3)

ORST.EDU
(Machine: v3)

BUS.ORST.EDU
(Machine: v4)

MIT.EDU
(Machine: v3)

CSAIL.MIT.EDU
(Machine: v4)

Roots
(Machine: V1)

GSTLD
(Machine: v2)

NSTLD
(Machine: v2)

EDU
(Machine: v2)

NET
(Machine: v2)

COM
(Machine: v2)

GOOGLE.COM
(Machine: v3)

ORST.EDU
(Machine: v3)

BUS.ORST.EDU
(Machine: v4)

MIT.EDU
(Machine: v3)

CSAIL.MIT.EDU
(Machine: v4)

Figure 2 - DNS Hierarchy

Roots

SLD

TLD

17

For our model DNS, we use five computers to simulate the environment shown in
Figure 2. We divide the different layers of the DNS between computers v1, v2, v3, and v4 for
simplicity and ease of management. The five computers have the following responsibilities:

 v1: Hosts the root name servers a.root-servers.net through m.root-servers.net.

 v2: Hosts the top level domains. Currently we have com, net, edu, and org

implemented in the model.

 v3: Hosts the second level domains. Currently we have orst.edu, ucsb.edu, mit.edu,

nero.net, merit.net, and google.com.

 v4: Hosts the sub-domains (delegated domains from v3).

 v5: Acts as a resolver and metrics server to collect data.

4.4 DNS Behavior Model: Logical representation of how a DNS
server works and evolves over time according to different
parameter settings.

DNS and other common network services are controlled via text-based configuration files. In
the operation of DNS, the configuration files are changed as network requirements change. To
change a service, an administrator of that particular service uses a text editor or some other tool to
make changes in the associated configuration file(s). This change will subsequently change the
operation and overall behavior of the service. DNS service changes only occur when the service
is restarted, or for zone files when the serial number is updated.

We believe that by capturing the configuration at the time of the change we can model

the behavior of a name server over time. During operation, that is while the service is running,
the configuration file can be edited but the configuration will not take effect until the service is
restarted. Therefore we can view the operation of DNS and other network services as static.
They are only dynamic when viewed over a period of time. If we capture each configuration
state at the time the configuration change is made, we will have an accurate behavioral model
of the DNS and be able to infer configuration errors with the inference engine.

The reconfigurator algorithm is as follows:

1. Receive state change from Log Adapter.
2. Verify state change.
3. Read configuration files and convert to XML format.
4. Notify Agent of new state.

We have not made much progress toward making a behavior model that can be used to predict
and correct and DNS errors in order to improve the DNS performance. However, we have built
the framework for future investigations.

18

4.5 DNS Symptom Database

The DNS symptom database has been created. The symptom database is used by the
diagnostic agent to remedy the problems. Please see the Appendix for a complete table.

4.6 Tool for Reconfiguration of DNS Settings

The reconfiguration tool allows us to dynamically change the operations and overall
behaviors of the DNS system through settings of the DNS environment. The functions of the
reconfiguration tools can be divided into two categories. The first category includes functions
that are used to set up the DNS environment. For example, one can use the reconfiguration tool
to create or delete the name servers in the DNS hierarchy. One can also use the reconfiguration
tool to change the property of a name server such as change the query forwarding method of a
name server from non-recursive to recursive. These functions typically involve changing the
configuration and zone files of DNS servers. The second category includes functions that assist
error creation and statistics collection. These functions aim to measure the performance of the
diagnostic agents under different injected error rates and types. For example, to inject a simple
delegation error, the tool randomly targets a point in the DNS hierarchy of our test environment
and adds an invalid hostname to its delegation point. After the tool makes this change to the
target delegation point, it updates the serial number of that zone file so changes can be tracked. It
then restarts the name server, which causes the changes to be made. The configuration tool also
keeps track of changes for temporal behavior modeling, and also to permit the diagnostic agent to
restore the DNS system back to the “last known good” configuration.

4.7 Diagnostic Agent

The distributed diagnostic agent is the core of our solution and envelopes three of the
deliverables stated earlier in this document. The deliverables are:

1. A DNS sensor feed that allows the use of feedback provided by multiple endpoints to
improve diagnostic speed and accuracy.

2. A collection of DNS performance metrics in terms of associated traffic and cache

statistics.

3. A set of distributed diagnosis algorithms. These algorithms will constitute the

diagnostic agent’s inner logic.

A graphical depiction of the overall diagnostic agent architecture is shown in the
Appendix. The name server agent architecture is divided into three functional components:
agent core, reconfigurator, and inference engine. The agent core collects data from local and
remote DNS environments to aid the error diagnosis. The reconfigurator provides the agent the
ability to capture and make changes to the local configuration. The inference engine uses
models generated by the reconfigurator and data collected by the agent core to diagnose
possible errors. Also, since an agent is running on each DNS server and it records the

19

behaviors of the DNS server, we are able to learn the behavior of a DNS environment over
time, which in turn allows us to answer questions regarding the configuration and operation.

The main function of the agent core is to provide support for the inference engine. This
support includes providing the sensor feeds (or probes) and handling of agent-to-agent, agent-
to-name server and name server-to-agent communication. The agent core collects information
that the inference engine needs to function. It accepts simple pre-defined instructions from the
inference engine in order to make the corrective changes to the problems that it discovers.

A secondary function of the agent core is to analyze the name server log files using the
Log Adapter. The log adapter is based on the Common Based Event (CBE), part of IBM's
Common Event Infrastructure. CBE provides a standard that is platform-independent and can
be extended to work with any type of software, including but not limited to DNS Bind. The
CBE standard provides a way to categorize and prioritize events logged at the name server.
While DNS currently has a category and priority for each event logged, using a standard such
as CBE allows us to build a robust and extendable agent that is more capable of tackling
problems outside of DNS. This reflects our goal of not limiting our agent to the diagnosis of
DNS based configuration problems, but eventually being able to diagnose other network
services as well. The log adapter has two specific tasks. The first is to transform new log
entries into CBE format and store the entries into a database for archiving. The second task of
the log adapter is to filter events based on priority. By setting a high priority, the agent can
quickly react to log records that require immediate attention.

The purpose of the inference engine is to provide the agent the ability to infer
configuration errors and to monitor the behavior. Since DNS as well as other network services
are configuration based systems, we use the Resource Description Framework (RDF) to model
the configuration and the Ontology Web Language (OWL) to model the errors. Errors are
inferred using the OWL error model and the RDF model of the configuration. The inference
engine receives notification from the agent that there has been a configuration change and new
data is available from the DNS Reconfigurator. The inference engine then reads in the new data
and creates a model of the current DNS configuration. The inference engine then takes the error
model and the newly created configuration model to create an inference model. With the
inference model, one can ask questions about the properties or values containing in the model.
These questions can be general questions such as is there any error in the configuration model?
Or, they can be specific questions such as whether a particular error exists. The agent can
initiate these questions at a regular interval, at startup, or whenever an error is suspected to be
occurring.

20

5. Conclusions

During the course of this seedling study we have made good progress in laying a sound
foundation for future research in the field of Cognitive Networking. Through this study we have
only begun to realize the potential model-based diagnosis for increasing the reliability and
efficiency of a large distributed networked system like DNS.

We have built a DNS structure similar to that used in real-world environments. We
have created and deployed diagnostic agents capable of monitoring and collecting applicable
data. Finally, we have created a distributed framework for model-based diagnosis, which
allows us to diagnose errors in a high-level and scalable manner.

While our research focus has been on diagnosing and correcting DNS delegation errors,

we believe an extended diagnosis system based on our framework will be able to correct other
DNS errors as well. Furthermore, it is very plausible that one can design a feature-rich software
suite based on our model-based reasoning framework that can diagnose and correct errors in
other distributed network services.

6. Reference Information

6.1 Diagnostic Agent

Agent gets m
odel in

foramtion fro
m

Inference Engine

Inference Engine builds new model

From new state

Figure 3. - Diagnostic Agent

21

6.2 Symptom – Fault Table

Table 1: Fault Table
Symptom ID Symptom Description Fault ID Fault Description
s1 Loss of Network Connectivity f1 Forgot to Increment Serial Number
s2 Response from Unexpected Source f2 Forgot to Reload Primary Master Server after changes are made
s3 Recursion Bugs f3 Corrupt db.cache data
s4 Client unsure on handleing of NS record in Authority Section f4 Ignored Referral
s5 No answer to query f5 To Many Referals
s6 Client calls on server to many times f6 Malicious Server
s7 Nave Server is infected with bogus cache data f7 Zero Answer
s8 A server refers to itself in the authority section f8 Added Name to Database File, but Forgot to Add PTR Record
s9 Cache Leaks f9 Incorrect db.cache file
s10 Remote Names Can't Be Looked Up f10 db.cache size set to small
s11 Name Error Bugs f11 Server does not do negative caching
s12 Lookups Take a Long Time f12 Syntax error in zone data file on master
s13 Wrong or Inconsistent Answer f13 Incorrect IP address for master on Slave zone data file
s14 Slave name server data does note change when change is made f14 Syntax error in configuration file or zone data file
s15 Name Server Keeps Loading Old Data f15 Missing Dot at the End of a Domain Name in a Zone Data file
s16 Is invalid proceeding anyway f16 Missing root.hints or db.root data
s17 Slave Server Can't Load Zone Data f17 Missing Subdomain Delegation
s18 Internet services refused f18 TTL exeeded
s19 Host fails authentication checks f19 Syntax error in resolv.conf
s20 Inconsistant or Missing Bad Data f20 Incorrect labels in DNS name
s21 Lame-server reported f21 Incorrect SOA format
s22 Name Server fails to load f22 Incorrect Glue records
s23 Name server reports “Too Many Open Files” f23 Retry Interval is to low

f24 Incorrect address in query list – allow-query { address_match_list }
f25 Incorrect configuration named.conf listen-on { ip_address }
f26 PTR record points to CNAME
f27 Expire time exceeded
f28 Loss of Network Connectivity

22

Phase 2-Part 2:
 Learning Generalized Task Knowledge from

Demonstration and Question Answering

1. Introduction

Most humans have experienced the difficulties that can arise when using paper-based
instructions to complete an assembly task. Most of these difficulties could be avoided if
only the instructions “truly understood” the assembly task, could monitor the user, and
proactively engage the user. The high-level application goal of this project is to study the
use of machine learning techniques for developing such intelligent, proactive instructions.

We imagine a scenario where technicians in the field carry wearable “instruction
goggles”, rather than paper instruction manuals. The goggles would contain information
about thousands of possible tasks and when worn could guide the user through a
particular task via an augmented reality display. For assembly tasks, the augmented
reality interface might highlight the next part to be attached to the current sub-assembly
along with its destination and tools required. In addition, the interface could proactively
monitor the progress of the user and interrupt the user if a mistake is about to be made.

It is already possible to develop such systems for small, relatively simple tasks in
closed worlds. However, this comes at a significant and painstaking development cost.
Scaling up to thousands of assembly tasks and less constrained environments would
require an enormous and impractical development effort. An alternative is to develop
machine-learning methods that can acquire the necessary task knowledge automatically
by observing demonstrations of each task.

Existing machine learning techniques are typically based on searching for
statistically justified patterns in data. For complex learning tasks, such as our assembly
example, these techniques would require thousands of training demonstrations, making
them impractical. Thus, new, less data hungry, learning algorithms are needed for such
tasks. One approach toward this goal is to develop algorithms that can leverage a variety
of knowledge sources about the learning domain in order to decrease the training data
requirements. For example, useful knowledge sources for learning assembly knowledge
might include physics-based and geometric reasoning engines, configuration-space
planners, among many others. Learning in the presence of such knowledge sources is a
relatively untouched area of machine learning, but is perhaps one of the most important
directions toward building truly integrated intelligent systems that can learn.

Below we outline an initial investigation where we develop and partially
implemented an architecture for learning furniture assembly tasks from single
demonstrations. At an application level, our work highlights some of the main challenges
that are left in developing such a system. At a scientific level, our work provides a

23

concrete example of a learning domain where rich knowledge sources are necessary and
highlights some of general machine learning issues.

The remainder of this report proceeds as follows. First, we introduce the assembly
domain used in our pilot study. Next we give a high-level overview of our learning
system’s architecture. This will be followed by a more detailed treatment of each system
component. Next, we summarize our results from a user study that suggest the utility of
having an assembly-task assistant. Finally, we conclude with a summary of the issues
raised by our study.

2. Pilot Study Domain
We chose to study furniture assembly as a domain for learning task knowledge from

demonstrations. For this purpose, we selected “Z-Line Designers 2 Drawer Deluxe
Cherry Vertical File” shown in Figure 4 as our test piece of furniture.

Figure 4. - The Z-Line 2 Drawer Deluxe Cherry Vertical File

The assembly instructions for the Z-Line file can be divided into three parts as

depicted in Figure 5a-c. First, the main frame of the file must be constructed. Next, two
nearly identical drawers must be constructed. Finally, the drawers are inserted into the
file. While this is a relatively simple piece of furniture to assemble, there are many
opportunities to make mistakes that lead to dead-ends. For example, if one attaches the
four sides of a drawer together before inserting the drawer bottom, it becomes impossible
to insert the bottom. Surprisingly, as our user studies show, such seemingly obvious
errors are common in practice.

It is interesting to note that although the instruction manual specifies a single
sequence of assembly steps, there are many other possible assembly sequences that work
equally well.

A human will recognize such generalized task knowledge after observing just a

single assembly sequence. We would also like this to be the case for our learner, as an
intelligent assembly tutor should not interrupt the user if they depart from the paper

24

instructions, but are otherwise correct. Clearly no system based on pure statistics will be
able to robustly infer alternative assembly sequences from a single demonstration. Such
alternatives can only be inferred by reasoning about the observed sequence using rich
knowledge sources.

(a) (b) (c)

Figure 5. - (a) Depiction of assembly of main frame. (b) Depiction of assembly of drawer.
(c) Final step of placing drawer in main frame.

The primary objective of our system is to observe a demonstration of the Z-Line

assembly, using motion-capture technology as a “vision system”, and from that learn a
generalized plan for assembling the file. Ideally we would like the generalized plan to
encode all legal assembly sequences, rather than just the one observed. In addition, we
would like the generalized plan to encode a notion of difficulty, so that it can determine
whether one assembly sequence is physically easier than another. The ability to judge the
difficulty of an assembly sequence, in addition to the correctness, is important for the
system to offer the best possible guidance to a user.

3. System Overview
Figure 6 shows the high-level end-to-end architecture of our proposed learning

system. These components are described in further detail in the next section.

3.1 Motion Capture.

The front end of our system is a motion capture system that observes a human
performing an assembly and produces a movie of orientations and positions of each part
involved in the assembly.

3.2 Annotation.

The raw motion capture data is then annotated by a human with information about
the observed subtasks and structural relationships in key frames. Eventually the goal is
for this annotation to be acquired via a mix of automated analysis (perhaps the result of
learning) and speech-recognition technology. Automating this process was beyond the
scope of our study.

25

3.3 Learning Component.

The learning component takes as input the annotated motion capture data along with
three knowledge sources. First, there is an interface to a physics simulator that allows for
physical queries to be answered via simulation—e.g. “Is the current assembly stable?”.
Second, there is an interface to a C-space planner that allows for queries to be answered
about the feasibility of physical actions subject to topological constraints—e.g. “Is there
any way to insert part A into slot B?”. Third, the learner is provided with geometric
models of all the parts involved in the assembly. An eventual goal is for these part
models to be acquired, or refined, via automated learning techniques. However, this again
was beyond the scope of this study.

The learner analyzes the annotated motion capture data and via a series of queries to
the physical simulator and C-space planner outputs a generalized task model for
assembling the Z-line. This task model encodes all of the hypothesized legal assembly
sequences along with a measure of the difficulty of each assembly step.

Figure 6. - System architecture of the assembly task learner.

human
assembly

generalized task model

Motion capture
system

sequence of position & orientation data movie
assembly objects

Learner

 Human Annotation
of Movie

annotation of subtasks and structural relations

C-space
planner

Physical
simulator

geometric
part models

26

It is important to note that the notion of learning here is much different than the usual
one in machine learning. Here we view learning as the process of actively engaging a set
of knowledge sources in order to construct a consistent and well-justified hypothesis from
observed data. This view is depicted in Figure 7 where the learner is shown to have a two
way interface to each knowledge source, allowing it to pose queries and receive
responses.

Figure 7. - Depiction of knowledge sources used by learner.

4. System Details
Below we provide more details about the various components and functions

performed by our system.

4.1 Motion Capture
Our assembly demonstrations of the Z-line file were conducted in the Oregon State

University motion-capture (mocap) facility. A mocap system can be viewed as a
simplified computer vision system for tracking objects. The primary simplification is the
use of markers on each object to be tracked, which removes most of the difficulties
involved with tracking from raw video.

On each part of the Z-line file, we placed three markers A, B, C and chose a position
on the part (e.g., one of the corners) to be the origin of the local coordinate system of the
part. We measured the displacement of marker A from that origin and recorded that
information for each part. Note that we did not attempt to track part connectors (e.g.
dowels and screws) or tools in our experiments.

In the motion capture system, the markers all look the same. Whenever a new
marker became visible, we manually told the mocap system the id number of that marker.

Learner
Configuration

Planner

Geometric
Part

Models
Vision
System

Physics
Modeling

• Spatial reasoning

• Path planning

• Motion tracking

• Activity
recognition

• Physical
reasoning

• Learning
hierarchical plan
knowledge • Demonstration

• Annotation

• Query answering

27

The mocap system then was able to track that marker until it was occluded by some other
part (or by the person, etc.). After completing the mocap for an assembly sequence, an
interactive interface was used to clean-up any tracking errors made by the system. It took
us approximately 4 hours to manually clean 2 minutes of video. After cleaning, we were
left with a movie that gives the 3D (x,y,z) locations of each marker at each time step.
This data is then processed to compute the 6 degrees-of-freedom pose of each object in
the global coordinate system. Figure 8a and b show a number of the Z-line parts laid out
in the mocap room along with an image showing the calculated 3D coordinates of the
three markers for each part (shown as triangles).

(a) (b)

Figure 8. - (a) Cabinet parts laid out at the start of a motion capture session. (b) A
depiction of the data recorded by the motion capture system. Each part has three

markers, which are shown as the vertices of the triangles in the figure.

After arriving at the final position/orientation movie, we annotated key frames with
semantic information about the task and structural relations among parts. In particular, we
annotated each frame where a step was completed (e.g. attaching one piece to another) as
the “final configuration” of that step. The annotation included information about all of the
structural relations among parts. In addition, if the step completed a subgoal (e.g.
completing a drawer assembly), we annotate that subgoal. Figure 9a shows an example
annotation for one of the key frames.

28

(a) (b)

Figure 9. - (a) The symbolic annotation of a key frame of the motion capture. (b)
Depiction of internal model of key motion capture frame. The internal representation is

based on the provided part model, rather than the raw motion capture data.

For any key frame, given the structural annotations, the 3D marker coordinates, and
the geometric part models, it is relatively straightforward to use a constrained
optimization procedure to create an internal model of the location of each part. This
model needs to obey the constraints imposed by the structural annotations and try to
match the position data provided by the mocap system as closely as possible.
Unfortunately, the timeframe of the project did not allow us to implement this
optimization procedure, and we simply provided the internal models by hand for the key
frames. Figureb shows a depiction of the internal part model for one of our key frames.

4.2 Generating Feasible All-Policies Graph
A critical question is what representation to use for the learned generalized task

knowledge. The representation needs to compactly encode sets of possible assembly
sequences, of which there can be exponentially many. We considered a number of
representations, including the commonly studied partially-ordered plans and hierarchical
task networks. However, these representations did not appear compact enough for our
purposes. In particular, physical assembly tasks such as the Z-line file, place weak
constraints on many of the action orderings. For example, when assembling a drawer, the
order in which the sides are joined together is not important, and our representation needs
the ability to compactly encode such information.

We finally settled on a representation which we call an all-policies graph. The nodes
of an all-policy graph correspond to partial assemblies, and the edges correspond to
single assembly steps. In our study we created multiple all-policy graphs, one for each
sub-assembly of the Z-line file, which includes the two drawers and the frame. The
intention is that for each sub-assembly, any path through the all-policy graph should
correspond to a legal assembly sequence.

Our learner infers an all-policies graph using a two step process. First, given the
structural annotation of the final mocap frame of a particular sub-assembly, we create a

High-Level Structural Representation:

rigid(DrawerLeftSide, DrawerBack)
rigid(DrawerRightSide, DrawerBack)
rigid(DrawerFront, DrawerLeftSide)
rigid(DrawerFront, DrawerRightSide)
trapped(DrawerBottom, DrawerLeftSide)
trapped(DrawerBottom, DrawerBack)
trapped(DrawerBottom, DrawerRightSide)
trapped(DrawerBottom, DrawerFront)

Position and Orientation Data:
(from marker data)

29

complete state-space graph by backtracking from the final state. Figure 10 shows the
complete state space graph for a drawer sub-assembly. Each arc through this graph
corresponds to either attaching drawer sides to one another or inserting the drawer bottom
into various grooves on the drawer sides.

Figure 10. - The complete state-space graph for the drawer assembly. Here the dark
edges correspond to the sides of the drawer and the blue area corresponds to the

bottom of the drawer. Arrows correspond to the addition of one part to the assembly.
Note that some arrows do not correspond to physically possible actions. One of the

learner’s objectives is to rule out such arcs.

It turns out that some of these arcs in the state-space graph are not physically
possible due to topological constraints. For example, as depicted in Figure 11, it is
impossible to insert the bottom of the drawer after all four sides of the drawer have been
attached. The second step of generating an all-policies graph is to use the C-space planner
to determine which arcs are realizable and to prune arcs that are not. We used a monte-
carlo-based C-space planner for this purpose. In order to determine whether an arc from
state A to state B is possible, we used the planner to determine if there was a
topologically valid trajectory for moving the new part into state B. For example, for the
lower arc in Figure 11, the C-space planner was set up to find a trajectory for the drawer
bottom that placed it in its final location. The planner was unable to find such a plan, so
the learner accordingly pruned the arc. After backtracing through the entire state-space
graph (pruning when possible) and testing each arc, we end up with a subset of the
original arcs that are all topologically possible. The resulting subgraph is taken to be the
final all-policies graph Figure 12 shows the all-policies graph for the drawer assemblies
(same for both drawers) and for the frame. Also shown is the path taken through the
graph in the demonstrated assembly. Clearly the all policies graph has generalized well
beyond that single example.

30

Figure 11. - The lower plan step is infeasible due to the fact that the bottom panel cannot
be inserted when all four sides of the drawer are attached. The C-Space planner can be

used to determine that the planning step is physically impossible. The top arc
corresponds to a physically realizable action. Accordingly the C-Space planner

determines that this is the case by computing a plan for attaching the fourth side onto
the drawer.

Figure 12. - The final all-policies graph after pruning according topological constraints.

The left-bottom plan shows the graph for assembling the drawers. The right-bottom plan
shows the graph for assembling the cabinet frame. The green-bold arcs show the

observed path from the demonstration.

4.3 Assessing Difficulty of Plan Steps
The above all-policies graph only indicates whether an assembly step is topologically

possible or not. It does not encode information about the difficulty of each step. In order
to compute such information, the system utilizes the physics simulator. Intuitively we
measure the difficulty of an assembly step by roughly how many “hands” are required to
perform the step. As a proxy for this measurement, we use the physics simulator to
determine the minimum number of parts that must be “frozen in space” in order to make

31

the assembly state resulting from the step stable. This is done by an exhaustive search,
where each step of the search freezes some number of the parts and then lets gravity take
effect. If any unfrozen part falls due to gravity, then we say that the state was unstable
given the current set of frozen parts. We used the Novodex physics simulator in our
experiments. Figure 13 shows the all-policies graph with each arc labeled by a weight
corresponding to the “number of hands” measure of difficulty.

Figure 13. - Weighted all-policies graph for the drawer assembly. The arc weights

indicate the difficulty of the planning step and are based on simulating the stability of
the partial assemblies.

5. Results of User Study
In order to assess the potential utility of an automated assembly instructor, we

conducted a user study with the goal of understanding the typical error modes of humans
when performing assembly tasks.

We selected five subjects from the Oregon State University, Computer Science
Department and asked them to assemble the Z-line file. The parts were laid out on the
table, the cam locks and guide rails were fixed in the appropriate parts, and user was
given the Z-line instruction manual. We video taped the assemblies and later analyzed the
performance of each participant.

In our analysis we counted two types of errors: 1) detachment errors, occurring when
a part is attached and then detached, and 2) deselect errors, occurring when a part was
picked up with the intention of attaching it, but then not attached. Deselect errors provide
a measure of how useful a human might find a system that highlights the next part to add
to the assembly. Detachment errors are quite time consuming and measure the utility of a
system that can monitor the user and proactively interrupt them before they make the
error. We also separately recorded the total time for assembly and the time spent
searching for parts (including reading the manual). Error! Reference source not found
summarizes the data we collected.

2

2

2

2

3

3

2

3

3

3

2

3

2

2

2

2

2

2

2

2

3

32

We were most surprised by the fact that the subjects made more errors than we had

expected. Three out of the five reached the dead-end state of fixing all four sides of the
drawer before inserting the bottom panel (i.e. the arc ruled out in Figure 11), and were
forced to backtrack. An automated instructor, using our all-policies graph could have
prevented these errors. Another interesting observation is that over 40% of the users’ time
was spent searching for parts and reading the instruction manual. Determining the proper
orientation of parts also consumed a significant amount of the subjects’ time. Overall,
these results indicate that providing the user with an automated instructor in the form of
augmented reality goggles could have a significant impact on assembly performance. The
augmented reality display would help the user avoid searching for parts, could show the
user the next assembly step, and could demonstrate the proper orientation of each part.
The user could also be warned when they are about to take a dead-end action.

Table 2: Summary of user study results.

 Number of Errors Time (mts:secs)

 Detaches Deselects Total Search

Average 4.6(31%) 3.8(25%) 19:49 8:20(43.2%)

S.D. 3.8 2.4 6:03 2:32(6.41%)

6. Summary and Conclusions

Our pilot project has developed an architecture for the problem of learning
generalized task knowledge from single assembly demonstrations. While there are a
number of components of the architecture that need to be fully implemented (particularly
the perceptual system), we believe that the challenges are just on the fringe of existing
technology. Our small user study suggests there is significant utility in having automated
assembly instructors. Developing a learning system to acquire the necessary knowledge is
perhaps the only practical way to develop a large library of assembly tasks for such
systems.

From a machine-learning perspective, our system architecture suggests a view of
machine learning that is far from the norm. In particular, learning is a process of
interacting with rich knowledge sources and data, in order to arrive at a reliable
hypothesis. This suggests a move away from data hungry methods to methods that
actively consult knowledge sources as a proxy for hard-to-gather training data. The
system described in this report represents only a hardwired instantiation of what we
envision such a learning system should look like. In particular, the interaction between
the learner and knowledge sources was hardwired and inflexible. Rather, the ultimate

33

goal should be to develop “representations” of knowledge sources and data, which a
learner can then reason about in order to decide on how to best interact with the sources
in order to achieve the learning objective. Ultimately, we believe that such approaches
are necessary if we are to achieve truly integrated intelligent systems with learning
capabilities.

Appendix A: Fault-Table Diagnosis for DNS
In fault-table diagnosis, we must define a set of symptoms and a set of faults. The

fault table then lists the symptoms of each fault. Diagnostic algorithms can use the fault
table to drive efficient diagnosis, particularly if the probability of each fault is known and
if the cost of measuring each symptom is known.

The following table lists the symptoms and faults that we were able to identify for a

single DNS installation.

Symptom
ID Symptom Description Fault ID Fault Description

s1 Loss of Network Connectivity f1 Forgot to Increment Serial Number

s2 Response from Unexpected Source f2 Forgot to Reload Primary Master Server after
changes are made

s3 Recursion Bugs f3 Corrupt db.cache data

s4 Client unsure on handling of NS record in
Authority Section f4 Ignored Referral

s5 No answer to query f5 To Many Referrals
s6 Client calls on server to many times f6 Malicious Server
s7 Nave Server is infected with bogus cache data f7 Zero Answer

s8 A server refers to itself in the authority section f8 Added Name to Database File but Forgot to Add
PTR Record

s9 Cache Leaks f9 Incorrect db.cache file
s10 Remote Names Can't Be Looked Up f10 db.cache size set to small
s11 Name Error Bugs f11 Server does not do negative caching
s12 Lookups Take a Long Time f12 Syntax error in zone data file on master

s13 Wrong or Inconsistent Answer f13 Incorrect IP address for master on Slave zone
data file

s14 Slave name server data does note change
when change is made f14 Syntax error in configuration file or zone data file

s15 Name Server Keeps Loading Old Data f15 Missing Dot at the End of a Domain Name in a
Zone Data file

s16 Is invalid proceeding anyway f16 Missing root.hints or db.root data
s17 Slave Server Can't Load Zone Data f17 Missing Subdomain Delegation
s18 Internet services refused f18 TTL exceeded
s19 Host fails authentication checks f19 Syntax error in resolv.conf
s20 Inconsistent or Missing Bad Data f20 Incorrect labels in DNS name
s21 Lame-server reported f21 Incorrect SOA format
s22 Name Server fails to load f22 Incorrect Glue records
s23 Name server reports Too Many Open Files f23 Retry Interval is to low

 f24 Incorrect address in query list allow-query
{address_match_list }

 f25 Incorrect configuration named.conf listen-on
{ip_address }

 f26 PTR record points to CNAME
 f27 Expire time exceeded
 f28 Loss of Network Connectivity

34

The following table is the fault-symptom table. A “1” in a cell indicates that the fault
Faults

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28

s1 0 0 0 0 0 0 1 0

s2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

s3 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s4 0 0 0 1 0

s5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0

s6 0 0 0 0 1 0 1 0 0

s7 0 1 0 0 0 0 0 0

s8 0 0 0 0 0 1 0

s9 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 1 1

s11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

s12 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

s13 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0

s14 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s15 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s16 1 0

s17 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

s18 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s20 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

s21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

s22 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S
ym

pt
om

s

s23 0 1 0 0 0

35

Appendix B: Machine Learning for Cognitive Networks:
Technology Assessment and Research Challenges

Tom Dietterich

Department of Computer Science
Oregon State University

Corvallis, OR 97331

Pat Langley
Institute for the Study of Learning and Expertise

2164 Staunton Court
Palo Alto, CA 94306

Abstract

The field of machine learning has made major strides over the last 20 years. This
document summarizes the major problem formulations that the discipline has studied,
then reviews three tasks in cognitive networking and briefly discusses how aspects of
those tasks fit these formulations. After this, it discusses challenges for machine learning
research raised by Knowledge Plane applications and closes with proposals for the
evaluation of learning systems developed for these problems.

B1. Background and Motivation

Recently, Clark (2002) and Partridge (2003) have proposed a new vision for
computer network management—the Knowledge Plane—that would augment the current
paradigm of low-level data collection and decision making with higher-level processes.
One key idea is that the Knowledge Plane would learn about its own behavior over time,
making it better able to analyze problems, tune its operation, and generally increase its
reliability and robustness. This suggests the incorporation of concepts and methods from
machine learning (Langley, 1995; Mitchell, 1997), an established field that is concerned
with such issues.

Machine learning aims to understand computational mechanisms by which
experience can lead to improved performance. In everyday language, we say that a
person has `learned' something from an experience when he can do something he could
not, or could not do as well, before that experience. The field of machine learning
attempts to characterize how such changes can occur by designing, implementing,
running, and analyzing algorithms that can be run on computers. The discipline draws on
ideas from many other fields, including statistics, cognitive psychology, information
theory, logic, complexity theory, and operations research, but always with the goal of
understanding the computational character of learning.

36

37

There is general agreement that representational issues are central to learning. In
fact, the field is often divided into paradigms that are organized around representational
formalisms, such as decision trees, logical rules, neural networks, case libraries, and
probabilistic notations. Early debate revolved around which formalism provided the best
support for machine learning, but the advent of experimental comparisons around 1990
showed that, in general, no formalism led to better learning than any other. However, it
also revealed that the specific features or representational encodings mattered greatly, and
careful feature engineering remains a hallmark of successful applications of machine
learning technology (Langley & Simon, 1995).

Another common view is that learning always occurs in the context of some
performance task, and that a learning method should always be coupled with a
performance element that uses the knowledge acquired or revised during learning.
Figure~14 depicts such a combined system, which experiences the environment, uses
learning to transform those experiences into knowledge, and makes that knowledge
available to a performance module that operates in the environment. Performance refers
to the behavior of the system when learning is disabled. This may involve a simple
activity, such as assigning a label or selecting an action, but it may also involve complex
reasoning, planning, or interpretation. The general goal of learning is to improve
performance on whatever task the combined system is designed to carry out.

Figure 14 - . Relationship between learning, performance, knowledge, and the

environment.

We should clarify a few more points about the relations between learning,
performance, and knowledge. The figure suggests that the system operates in a
continuing loop, with performance generating experiences that produce learning, which
in turn leads to changes in performance, and so on. This paradigm is known as on-line
learning, and characterizes some but not all research in the area. A more common
approach, known as off-line learning, instead assumes that the training experiences are all
available at the outset, and that learning transforms these into knowledge only once. The
figure also includes an optional link that lets the system's current knowledge influence the
learning process. This idea is not widely used in current research, but it can assist
learning significantly when relevant knowledge is available.

In this paper, we examine various aspects of machine learning that touch on
cognitive approaches to networking. We begin by reviewing the major problem
formulations that have been studied in machine learning. Then we consider three tasks
that the Knowledge Plane is designed to support and the roles that learning could play in

38

them. Next we discuss some open issues and research challenges that the Knowledge
Plane poses for the field of machine learning. Finally, we propose some methods and
criteria for evaluating the contribution of machine learning to cognitive networking tasks.

B2. Problem Formulations in Machine Learning
Treatments of machine learning (e.g., Langley, 1995; Mitchell, 1997) typically

organize the field along representational lines, depending on whether one encodes learned
knowledge using decision trees, neural networks, case libraries, probabilistic summaries,
or some other notation. However, a more basic issue concerns how one formulates the
learning task in terms of the inputs that drive learning and the manner in which the
learned knowledge is utilized. This section examines three broad formulations of machine
learning.

B2.1 Learning for Classification and Regression
The most common formulation focuses on learning knowledge for the performance

task of classification or regression. Classification involves assigning a test case to one of
a finite set of classes, whereas regression instead predicts the case's value on some
continuous variable or attribute. In the context of network diagnosis, one classification
problem is deciding whether a connection failure is due to the target site being down, the
target site being overloaded, or the ISP service being down. An analogous regression
problem might involve predicting the time it will take for the connection to return. Cases
are typically described as a set of values for discrete or continuous attributes or variables.
For example, a description of the network's state might include attributes for packet loss,
transfer time, and connectivity. Some work on classification and regression instead
operates over relational descriptors. Thus, one might describe a particular situation in
terms of node connections and whether numeric attributes at one node are higher than
those at an adjacent node.

In some situations, there is no special attribute that one knows at the outset will be
predicted from others. Instead, one may need to predict the value of any unobserved
attributes in terms of others that have been observed. This performance task, often called
pattern completion or flexible prediction, can be used for symbolic attributes, continuous
attributes, or a mixture of them. For example, given information about some network
variables that are measured easily and cheaply, one might want to predict the values of
other network variables that are more expensive to measure. A related task involves
predicting the conditional probabilities that different values will occur for unknown
variables given observed values for others. Alternatively, one may want to predict the
joint probability distribution over the entire space of possible instances.

One can formulate a number of distinct learning tasks that produce knowledge for
use in classification or regression. The most common, known as supervised learning,
assumes the learner is given training cases with associated classes or values for the
attribute to be predicted. For example, one might provide a supervised learning method
with 200 instances of four different types of connection failure, say 50 instances of each
class, with each instance described in terms of the attributes to be used later during
classification. The analogous version for regression would provide instead the time taken
to restore the connection for each training instance.

39

There exist a variety of well-established paradigms for supervised learning, including
decision-tree and rule induction (Quinlan, 1993; Clark & Niblett, 1988), neural network
methods (Rumelhart et al., 1986), nearest neighbor approaches (Aha et al., 1991), and
probabilistic methods (Buntine, 1996). These frameworks differ in the formalisms they
employ for representing learned knowledge, as well as their specific algorithms for using
and learning that knowledge. What these methods hold in common is their reliance on a
target class or response variable to direct their search through the space of predictive
models. They also share a common approach to evaluation, since their goal is to induce
predictive models from training cases that have low error on novel test cases.

A second broad class of tasks, unsupervised learning, assumes that the learner is
given training cases without any associated class information or any specific attribute
singled out for prediction. For example, one might provide an unsupervised method with
the same 200 instances as before, but not include any information about the type of
connection failure or the time taken to restore the connection.

As with supervised learning, there exist many techniques for learning from
unsupervised data, but these fall into two broad classes. One approach, known as
clustering (Fisher, 1987; Cheeseman et al., 1988), assumes the goal of learning is to
assign the training instances to distinct classes of its own invention, which can be used to
classify novel instances and make inferences about them, say through pattern completion.
For example, a clustering algorithm might group the 200 training instances into a number
of classes that represent what it thinks are different types of service interruption. Another
approach, known as density estimation (Priebe & Marchette, 1993), instead aims to build
a model that predicts the probability of occurrence for specific instances. For example,
given the same data about service interruptions, such a method would generate a
probability density function that covers both the training instances and novel ones.

A third formulation, known as semi-supervised learning (Blum & Mitchell, 1998),
falls between the two approaches we have already discussed. In this framework, some of
the training instances come with associated classes or values for predicted attributes, but
others (typically the majority) do not have this information. This approach is common in
domains such as text classification, where training cases are plentiful but class labels are
costly. The goal is similar to that for supervised learning, that is, to induce a classifier or
regressor that makes accurate predictions, but also to utilize the unlabeled instances to
improve this behavior. For example, even if only 20 of the 200 training instances on
service interruption included class information, one might still use regularities in the
remaining instances to induce more accurate classifiers.

Classification and regression are the most basic capabilities for which learning can
occur. As a result, the field has developed robust methods for these tasks and they have
been applied widely to develop accurate and useful predictive models from data. Langley
and Simon (1995) review some early successes of these methods, and they have since
formed the backbone for many commercial applications within the data-mining
movement. Methods for classification and regression learning can also play a role in
more complex tasks, but such tasks also introduce other factors that require additional
mechanisms, as discussed in the next section.

40

B2.2 Learning for Acting and Planning
A second formulation addresses learning of knowledge for selecting actions or plans

for an agent to carry out in the world. In its simplest form, action selection can occur in a
purely reactive way, ignoring any information about past actions. This version has a
straightforward mapping onto classification, with alternative actions corresponding to
distinct classes from which the agent can choose based on descriptions of the world state.
One can also map it onto regression, with one predicting the overall value or utility of
each action in a given world state.

Both approaches can also be utilized for problem solving, planning, and scheduling.
These involve making cognitive choices about future actions, rather than about
immediate actions in the environment. These activities typically involve search through a
space of alternatives, which knowledge can be used to constrain or direct. This
knowledge may take the form of classifiers for which action to select or regression
functions over actions or states. However, it can also be cast as larger-scale structures
called macro-operators that specify multiple actions that should be carried out together.

As with classification and regression, one can formulate a number of learning tasks
that produce knowledge for action selection and search. The simplest approach, known as
a learning apprentice (Mitchell et al., 1985) or an adaptive interface (Langley, 1999),
embeds the learner within a larger system that interacts with a human user. This system
may accept directions from the user about what choices to make or it may make
recommendations to the user, who can then accept them or propose other responses.
Thus, the user gives direct feedback to the system about each choice, effectively
transforming the problem of learning to select actions into a supervised learning task,
which can then be handled using any of the methods discussed earlier. A related
paradigm, known as programming by demonstration (Cypher, 1993), focuses on learning
macro-operators for later invocation by the user to let him accomplish things in fewer
steps.

For example, one might implement an interactive tool for network configuration that
proposes, one step at a time, a few alternative components to incorporate or connections
among them. The human user could select from among these recommendations or reject
them all and select another option. Each such interaction would generate a training
instance for use in learning how to configure a network, which would then be used on
future interactions. One can imagine similar adaptive interfaces for network diagnosis
and repair.

A closely related formulation of action learning, known as behavioral cloning
(Sammut et al., 1992), collects traces of a human acting in some domain, but does not
offer advice or interact directly. Again, each choice the human makes is transformed into
a training case for use by supervised learning. The main difference is that behavioral
cloning aims to create autonomous agents for carrying out a sequential decision-making
task, whereas learning apprentices and adaptive interfaces aim to produce intelligent
assistants. For example, one could watch a human expert execute a sequence of
commands in configuring a computer network, transform these into supervised training
cases for learning which actions to select or estimating the value of available choices.
However, one might also attempt to extract, from the same trace, recurring sets of actions
for composition into macro-operators that would let one solve the same problem in fewer
steps.

41

A somewhat different formulation involves the notion of learning from delayed
reward, more commonly known as reinforcement learning. Here the agent typically
carries out action to take in the environment and receives some reward signal that
indicates the desirability of the resulting states. However, because many steps may be
necessary before the agent reaches a desirable state (e.g., reestablishing a service
connection), the reward can be delayed. Research in the reinforcement learning
framework falls into two main paradigms. One casts control policies in terms of functions
that map state descriptions and available actions onto expected values (Kaelbling et al.,
1996; Sutton & Barto, 1998). This approach involves propagating rewards backward over
action sequences to assign credit, and may invoke a regression method to learn a
predictor for expected values. Another paradigm instead encodes control policies as a
more direct mapping from state descriptions onto actions, with learning involving search
through the space of such policies (Williams, 1992, Moriarty et al., 1999).

For instance, one might apply either approach to learning policies for dynamic
network routing (Boyan & Littman, 1994). The reward signal here might be based on the
standard metrics for route performance. The system would try establishing different
routes, each of which involves a number of decision-making steps, and learn routing
policies based on the observed performance. Over time, the routes selected by the learned
policy would change, giving improved behavior for the overall network.

Another formulation is closely related to reinforcement learning, but involves
learning from problem solving and mental search (Sleeman et al., 1982), rather than from
actions in the environment. Here the agent has some model of the effects of actions or the
resources they require which it can use to carry out mental simulations of action
sequences. However, there typically exist many possible sequences, which introduces the
problem of search through a problem space. Such search can produce one or more
sequences that solve the problem, but it also generate dead ends, loops, and other
undesirable outcomes. Both successes and failures provide material for learning, in that
they distinguish between desirable and undesirable choices, or at least suggest relative
desirability.

Research on learning from problem-solving traces occurs within a three broad
paradigms. Some work focuses on learning local search-control knowledge for selecting,
rejecting, or preferring actions or states. This knowledge may be cast as control rules or
some related symbolic representation, or it may be stated as a numeric evaluation
function. The latter approach is closely related to methods for estimating value functions
from delayed reward, which has occasionally been used for tasks like scheduling (Zhang
& Dietterich, 1995) and integrated circuit layout (Boyan & Moore, 2000). Another
paradigm emphasizes the formation from solution paths of macro-operators that take
larger steps through the problem space in order to reduce the effective depth of search. A
third framework, analogical problem solving, also stores large-scale structures, but
utilizes them in a more flexible manner by adapting them to new problems.

For example, one might apply any of these approaches to tasks like network routing
and configuration. Such an application would require some model of the effects that
individual choices would produce, so that the agent can decide whether a given state is
desirable before actually generating it in the world. Thus, the system would start with the
ability to generate routes or configurations, but it might do this very inefficiently if the
search space is large. After repeated attempts at routing or configuration, it would acquire

42

heuristic knowledge about how to direct its search, letting it produce future solutions
much more efficiently without loss in quality.

A final formulation involves the empirical optimization of a complex system.
Consider the problem of adjusting a chemical plant's parameters to improve its
performance (e.g., reduce energy consumption, reduce waste products, increase product
quality, increase rate of production, and so forth). If a predictive model of the plant is not
available, the only recourse may be to try various settings of the parameters and see how
the plant responds.

One example of this idea, response surface methodology (Myers & Montgomery,
1995) attempts to find the optimal operating point of a system by measuring system
behavior at various points. The classic method executes a classical experiment design
(e.g., some form of factorial design) about the current operating point and fits the results
with a quadratic function to estimate the local shape of the objective function surface.
Then it chooses a new operating point at the optimum of that quadratic surface and
repeats the process.

Machine learning researchers have studied methods that make weaker assumptions
and require fewer training examples. One approach (Moore et al., 1998) employs
regression to analyze the results of previous experiments and determine a region of
interest in which the objective function can be approximated well, then chooses a new
test point that is distant from other test points while still lying within this region. An
alternative approach (Baluja & Caruana, 1995) is more appropriate for searching discrete
parameter spaces such as those that arise in network configuration. Given a set of
parameter settings (configurations) for which the performance has been measured, one
fits a probability distribution to predict where additional ``good'' points are located, then
samples a new set of configurations according to that distribution, measures their
performance, and continues until convergence.

Before closing, it is worth making two other points about learning for action
selection and planning. First, in many domains, sensing requires active invocation, so
that one can view it as a kind of action. Thus, an agent can learn policies for sensing, say
to support efficient network diagnosis, just as it can for effectors, such as closing down a
link in response to a suspected attack. Second, some methods for plan learning assume
the availability of action models that describe the expected effects when actions are
invoked. This leads in turn to the task of learning such action models from observations.
This has many similarities to the problem of classification and regression learning, but
aims to support higher-level learning about policies for acting and planning.

B2.3 Learning for Interpretation and Understanding
A third formulation focuses on learning knowledge that lets one interpret and

understand situations or events. Classification can be seen as a simple example of this
idea, since one can `understand' an instance as being an example of some class. However,
more sophisticated approaches attempt to interpret observations in a more constructive
manner, by combining a number of separate knowledge elements to explain them. The
key difference is that classification and regression are content with models that make
accurate predictions, whereas interpretive approaches require models that explain the data
in terms of deeper structures. This process of explanation generation is often referred to
as abduction.

43

The explanatory or abductive approach is perhaps most easily demonstrated in
natural language processing, where a common performance task involves parsing
sentences using a context-free grammar or some related formalism. Such a grammar
contains rewrite rules that refer to nonterminal symbols for types of phrases and parts of
speech, and a parse tree specifies how one can derive or explain a sentence in terms of
these rules. One can apply similar ideas to other domains, including the interpretation and
diagnosis of network behavior. For example, given anomalous data about the transfer
rates between various nodes in a network, one might explain these observations using
known processes, such as demand for a new movie that is available at one site and
desired by others.

One can state a number of different learning tasks within the explanatory framework.
The most tractable problem assumes that each training case comes with an associated
explanation cast in terms of domain knowledge. This formulation is used commonly
within the natural language community, where the advent of `tree banks' has made
available large corpora of sentences with their associated parse trees. The learning task
involves generalizing over the training instances to produce a model that can be used to
interpret or explain future test cases. Naturally, this approach places a burden on the
developer, since it requires hand construction of explanations for each training case, but it
greatly constrains the learning process, as it effectively decomposes the task into a set of
separate classification or density estimation tasks, one for each component of the domain
knowledge.

A second class of learning task assumes that training instances do not have
associated explanations, but provides background knowledge from which the learner can
construct them. This problem provides less supervision than the first, since the learner
must consider alternative explanations for each training case and decide which ones are
appropriate. However, the result is again some model that can be applied to interpret or
explain future instances. This formulation is less burdensome on the developer, since he
need not provide explanations for each training case, but only a domain theory from
which the learner can construct them itself. Flann and Dietterich (1989) have referred to
this learning task as induction over explanations, but it is also closely related to some
work on constructive induction (Drastal et al., 1989).

A final variant on learning for understanding provides training cases with neither
explanations nor background knowledge from which to construct them. Rather, the
learner must induce its own explanatory structures from regularities in the data, which it
can then utilize to interpret and understand new test instances. An example from natural
language involves the induction of context-free grammars, including both nonterminal
symbols and the rewrite rules in which they occur, from legal training sentences (Stolcke
& Omohundro, 1994). Clearly, this task requires even less effort on the developer's part,
but places a greater challenge on the learning system. This approach has gone by a
variety of names in the machine learning literature, including term generation,
representation change, and constructive induction (though this phrase has also been used
for the second task).

Because learning tasks that produce explanatory models are generally more difficult
than those for classification and regression, some researchers have formulated more
tractable versions of them. One variant assumes the qualitative structure of the
explanatory model is given and that learning involves estimating numeric parameters

44

from the data. Examples of this approach include determining the probabilities in a
stochastic context-free grammar, tuning the parameters in sets of differential equations,
and inferring conditional probabilities in a Bayesian network. Another variation, known
as theory revision, assumes an initial explanatory model that is approximately correct and
utilizes training data to alter its qualitative structure. Examples include revising Horn
clause programs from classified training cases, improving sets of equations from
quantitative data, and altering grammars in response to training sentences.

B2.4 Summary of Problem Formulations
In summary, one can formulate machine learning tasks in a variety of ways. These

differ in both the manner in which learned knowledge is utilized and, at a finer level, in
the nature of the training data that drives the learning process. Table B1 summarizes the
main formulations that have been discussed in this section. However, it is important to
realize that different paradigms have received different degrees of attention within the
machine learning community. Supervised approaches to classification and regression
have been the most widely studied by far, with reinforcement learning being the second
most common. Yet their popularity in the mainstream community does not imply they are
the best ways to approach problems in computer networking, and research on the
Knowledge Plane should consider all the available options.

Table B1: Summary of Machine Learning Problem Formulations

Formulation Performance Task
Classification and regression Predict y given x

Predict rest of x given part of x
Predict P(x) given x

Acting and planning Iteratively choose action a in state s
Choose actions ‹a1,…,an› to achieve goal g
Find setting s to maximize objective J(s)

Interpretation and understanding Parse data stream into tree structure of objects
or events

Another important point is that one can often formulate a given real-world problem
as a number of quite different learning tasks. For example, one might cast diagnosis of
network faults as a classification problem that involves assigning the current network
state to either a normal condition or one of a few prespecified faulty conditions.
However, one could instead formulate it as a problem of understanding anomalous
network behavior, say in terms of unobservable processes that, taken together, can
explain recent statistics. Yet another option would be to state diagnosis as a problem of
selecting active sensors that narrow down alternatives. Each formulation suggests
different approaches to the diagnostic task, to learning knowledge in support of that task,
and to criteria for evaluating the success of the learning component.

45

B3. Tasks in Cognitive Networking
The vision for the Knowledge Plane (Clark, 2002; Partridge, 2003) describes a

number of novel capabilities for computer networks. This section reviews three
capabilities that the vision assumes in terms of the cognitive functionalities that are
required. These include anomaly detection and fault diagnosis, responding to intruders
and worms, and rapid configuration of networks.

B3.1 Anomaly Detection and Fault Diagnosis
Current computer networks require human managers to oversee their behavior and

ensure that they deliver the services desired. To this end, the network managers must
detect unusual or undesirable behaviors, isolate their sources, diagnose the fault, and
repair the problem. These tasks are made more challenging because large-scale networks
are managed in a distributed manner, with individuals having access to information
about, and control over, only portions of the system. Nevertheless, it will be useful to
examine the activities in which a single network manager engages.

The first activity, anomaly detection, involves the realization that something unusual
or undesirable is transpiring within the network. One possible approach to this problem,
which applies recent advances in Bayesian networks, is to formulate it as a density
estimation problem. Individual components, larger regions of the network, or, at some
level, the entire internet could be modeled as the joint probability distribution of various
quantities (queue lengths, traffic types, round-trip-times, and so on). An anomaly is
defined as a low probability state of the network.

Another possible approach is sometimes called one-class learning or learning a
characteristic description of a class. A classifier can be learned that attempts to find a
compact description that covers a target percentile (e.g., 95%) of the ``normal'' traffic.
Anything classified as ``negative'' by this classifier can then be regarded as an anomaly.

There are several issues that arise in anomaly detection. First, we must choose the
level of analysis and the variables to monitor for anomalies. This may involve first
applying methods for interpreting and summarizing sensor data. In the Knowledge Plane,
one can imagine having whole hierarchies of anomaly detectors looking for changes in
the type of network traffic (e.g., by protocol type), in routing, in traffic delays, in packet
losses, in transmission errors, and so on. Anomalies may be undetectable at one level of
abstraction but easy to detect at a different level. For example, a worm might escape
detection at the level of a single host, but be detectable when observations from several
hosts are combined.

The second issue is the problem of false alarms and repeated alarms. Certain kinds of
anomalies may be unimportant, so network managers need ways of training the system to
filter them out. Supervised learning methods could be applied to this problem.

The second activity, fault isolation, requires the manager to identify the locus of an
anomaly or fault within the network. For example, if a certain route has an especially
heavy load, this may be due to changes at a single site along that route rather than to
others. Hence, whereas anomaly detection can be performed locally (e.g., at each router),
fault isolation requires the more global capabilities of the Knowledge Plane to determine
the scope and extent of the anomaly.

The activity of diagnosis involves drawing some conclusions about the cause of the
anomalous behavior. Typically, this follows fault isolation, although in principle one

46

might infer the presence of a specific problem without knowing its precise location.
Diagnosis may involve the recognition of some known problems; say one the network
manager has encountered before, or the characterization of a new problem that may
involve familiar components.

Supervised learning methods can be applied to allow a network manager to teach the
system how to recognize known problems. This could be a prelude to automatically
solving them, as discussed below.

Both fault isolation and diagnosis may require active measurements to gather
information. For example, an anomaly found at a high level of aggregation would
typically require making more detailed observations at finer levels of detail to understand
the cause. In the ``Why?'' scenario, one can imagine active probes of both the local
computer (e.g., its configuration) and the internet (e.g., ``pings'' to see if the destination is
reachable and up). Diagnosis usually must balance the cost of gathering information
against the potential informativeness of the action. For example, if the ping succeeds, it
requires little time, but otherwise it can take much longer to time out. If our goal is to
diagnose the problem as quickly as possible, then ping might be a costly action to
perform. (Recent work in an area known as ``cost-sensitive learning'' addresses this
tradeoff between cost and informativeness.)

Fault isolation and diagnosis also typically require models of the structure of the
system under diagnosis. Much recent effort in network research has sought to provide
better ways of understanding and visualizing the structure of the internet. Machine
learning for interpretation could be applied to help automate this process. The resulting
structural and behavioral models could then be used by model-based reasoning methods
to perform fault isolation and diagnosis.

Once a network manager has diagnosed a problem, he is in a position to repair it.
However, there may exist different courses of action that would eliminate the problem,
which have different costs and benefits. Moreover, when multiple managers are involved
in the decision, different criteria may come into play that leads to negotiation. Selecting a
repair strategy requires knowledge of available actions, their effects on network behavior,
and the tradeoffs they involve.

Supervised learning methods could be applied to learn the effects of various repair
actions. Methods for learning in planning could be applied to learn repair strategies (or
perhaps only to evaluate repair strategies suggested by a human manager). There may be
some opportunity here for ``collaborative filtering'' methods that would provide an easy
way for managers to share repair strategies.

As stated, the `Why' problem (Clark, 2002; Partridge, 2003) requires diagnosis of an
isolated fault, but one can imagine variations that involve answering questions about
anomalies, fault locations, and actions taken to repair the system. Each of these also
assumes some interface that lets the user pose a specific question in natural language or,
more likely, in a constrained query language. Defining the space of Why questions the
Knowledge Plane should support is an important research task that deserves attention
early in the research program.

B3.2 Responding to Intruders and Worms
Responding to intruders (human, artificial, or their combination) and keeping

networks and applications safe encompasses a collection of tasks that are best explained

47

depending on the time at which they are performed by a network manager. We can group
them into tasks that occur before, during or after the occurrence of an intrusion, as the
temporal model in Figure 15 depicts.

Figure 15 - : Time axis model of incident prevention, detection, and response tasks.

Prevention Tasks. Network managers try to minimize the likeliness of future intrusions
by constantly auditing the system and eliminating threats beforehand. A network
manager proactively performs security audits testing the computer systems for
weaknesses—vulnerabilities or exposures. However scan tools (i.e., Nessus, Satan, and
Oval) used for penetration or vulnerability testing only recognize a limited number of
vulnerabilities given the ever increasing frequency of newly detected possibilities for
breaking into a computer system or disturbing its normal operation. Thus, network
managers continuously update scan tools with new plug-ins that permit them to measure
new vulnerabilities. Once the existence of a vulnerability or exposure is perceived,
network managers assess the convenience of discontinuing the service or application
affected until the corresponding patch or intrusion detection signature is available. A
tradeoff between risk level and service level is made in every assessment.

Network managers aim at shrinking the window of vulnerability, the time gap
between when a new vulnerability or exposure is discovered and a preventing solution
(patch, new configuration, etc.) is provided, as much as possible. A basic strategy to
accomplish that objective is based on two conservative tasks: first, minimizing the
number of exposures (i.e., disable unnecessary or optional services by configuring
firewalls to allow only the use of ports that are necessary for the site to function) and,
second, increasing awareness of new vulnerabilities and exposures (i.e., the subscription
model that Partridge discusses with relation to worms).

Finally, network managers continuously monitor the system so that pre-intrusion
behavioral patterns can be understood and used for further reference when an intrusion
occurs. Monitoring is an ongoing, preventive task.

Detection Tasks. The sooner an intrusion is detected, the more chances there are for
impeding an unauthorized use or misuse of the computer system. Network managers
monitor computer activities at different levels of detail: system call traces, operating
system logs, audit trail records, resource usage, network connections, etc. Normally, they
constantly try to fuse and correlate real-time reports and alerts stemming from different
security devices (e.g., firewalls and intrusion detection systems) to stop suspicious
activities before they have a negative impact (i.e., degrading or disrupting operations).

48

Different sources of evidence are valuable given the evolving capabilities of intruders to
elude security devices. The degree of suspicion and malignancy associated to each report
or alert still requires continuous human oversight. Consequently, network managers are
continually overwhelmed with a vast amount of log information and bombarded with
countless alerts. To deal with this onslaught, network managers often tune security
devices to provide an admissible number of false alerts even though this increases the risk
of not detecting real intrusions.

The time at which an intrusion is detected directly affects the level of damage that an
intrusion causes. An objective of network managers is to reduce the window of
penetrability, the time span that initiates when a computer system has been broken into
and extends until the damage has been completely repaired. The correct diagnosis of an
intrusion allows a network manager to initiate the most convenient response. However, a
tradeoff between quality and rapidness is made in every diagnostic.

Response and Recovery Tasks. As soon as a diagnostic on an intrusion is available,
network managers initiate a considered response. This response tries to minimize the
impact on the operations (i.e., do not close all ports in a firewall if only blocking one IP
address is enough). Network managers try to narrow the window of compromisibility of
each intrusion—the time gap that starts when an intrusion has been detected and ends
when the proper response has taken effect—deploying automatic intrusion response
systems. Nevertheless, these systems are still at an early stage and even fail at providing
assistance in manual responses. Therefore, network managers employ a collection of ad-
hoc operating procedures that indicate how to respond and recover from a type of
intrusion. The responses to an attack range from terminating a user job or suspending a
session to blocking an IP address or disconnecting from the network to disable the
compromised service or host. Damage recovery or repairing often entails maintaining
the level of service while the system is being repaired, which makes this process difficult
to automate. Once the system in completely recovered from an intrusion, network
managers collect all possible data to thoroughly analyze the intrusion, trace back what
happened, and evaluate the damage. Thus, system logs are continuously backed up. The
goal of post-mortem analysis is twofold. On the one hand, it gathers forensic evidence
(contemplating different legal requirements) that will support legal investigations and
prosecution and, on the other hand, it compiles experience and provides documentation
and procedures that will facilitate the recognition and repelling of similar intrusions in the
future.

Ideally, the ultimate goal of a network manager is to make the three windows
(vulnerability, penetrability, and compromisibility) of each possible intrusion converge
into a single point in time. Tasks for responding to intruders (human, artificial or a
combination of both) should not differ significantly from those tasks needed to recover
from non-malicious errors or failures.

B3.3 Network Configuration and Optimization
Network configuration and optimization can be viewed as an instance of the general

problem of designing and configuring a system. In this section, we review the space of
configuration problems and briefly describe the methods that have been developed in AI
and machine learning to solve these problems.

49

B3.3.1 A Spectrum of Configuration Tasks
The problem of the design and configuration of engineered systems has been studied

in artificial intelligence since the earliest days (Tonge, 1963). Configuration is generally
defined as a form of routine design from a given set of components or types of
components (i.e., as opposed to designing the components themselves). As such, there is
a spectrum of configuration problems of increasing difficulty, as shown in Table B2.
The simplest task is parameter selection, where values or chosen for a set of global
parameters in order to optimize some global objective function. Two classic examples
are the task of setting the temperature, cycle time, pressure, and input/output flows of a
chemical reactor and the task of controlling the rate of cars entering a freeway and the
direction of flow of the express lanes. If a model of the system is known, this becomes
purely an optimization problem, and many algorithms have been developed in operations
research, numerical analysis, and computer science to solve such problems.

The second task is compatible parameter selection. Here, the system consists of a set
of components that interact with one another to achieve overall system function
according to a fixed topology of connections. The effectiveness of the interactions is
influenced by parameter settings which must be compatible in order for sets of
components to interact. For example, a set of hosts on a subnet must agree on the
network addresses and subnet mask in order to communicate using IP. Global system
performance can depend in complex ways on local configuration parameters. Of course,
there may also be global parameters to select as well, such as the protocol family to use.

The third task is topological configuration. Here, the system consists of a set of
components, but the topology must be determined. For example, given a set of hosts,
gateways, file servers, printers, and backup devices, how should the network be
configured to optimize overall performance? Of course, each proposed topology must be
optimized through compatible parameter selection.

Finally, the most general task is component selection and configuration. Initially, the
configuration engine is given a catalog of available types of components (typically along
with prices), and it must choose the types and quantities of components to create the
network (and then, of course, solve the Topological Configuration problem of arranging
these components).

Table B2: Configuration tasks in increasing order of complexity

Problem:
Global

parameters
Local

parameters Topology Components
Global parameter configuration XX
Compatible parameter configuration XX XX
Topological configuration XX XX XX
Component selection and configuration XX XX XX XX

B3.3.2 The Reconfiguration Process
The discussion thus far has dealt only with the problem of choosing a configuration.

However, a second aspect of configuration is determining how to implement the
configuration efficiently. When a new computer network is being installed (e.g., at a
trade show), the usual approach is to install the gateways and routers; then the file and

50

print servers; and finally individual hosts, network access points, and the like. The
reason for this is that this order makes it easy to test and configure each component and it
minimizes the amount of re-work. Automatic configuration tools (e.g., DHCP) can
configure the individual hosts if the servers are in place first.

A different challenge arises when attempting to change the configuration of an
existing network, especially if the goal is to move to the new configuration without
significant service interruptions. Most configuration steps require first determining the
current network configuration, and then planning a sequence of reconfiguration actions
and tests to move the system to its new configuration. Some steps may cause network
partitions that prevent further (remote) configuration. Some steps must be performed
without knowing the current configuration (e.g., because there is already a network
partition, congestion problem, or attack).

B3.3.3 Existing AI/ML Work on Configuration
Parameter Selection. As we discussed above, parameter selection becomes optimization
(possibly difficult, non-linear optimization) if the model of the system is known.
Statisticians have studied the problem of empirical optimization in which no system
model is available.

Compatible Parameter Configuration. The standard AI model of compatible parameter
configuration is known as the constraint satisfaction problem (CSP). This consists of a
graph where each vertex is a variable that can take values from set of possible values and
each edge encodes a pair-wise constraint between the values of the variables that it joins.
A large family of algorithms has been developed for finding solutions to CSPs efficiently
(Kumar, 1992). In addition, it is possible to convert CSPs into Boolean satisfiability
problems, and very successful randomized search algorithms, such as WalkSAT (Selman
et al., 1993), have been developed to solve these problems.

The standard CSP has a fixed graph structure, but this can be extended to include a
space of possible graphs and to permit continuous (e.g., linear algebraic) constraints. The
field of constraint logic programming (CLP; Jaffar & Maher, 1994) has developed
programming languages based on ideas from logic programming that have a constraint
solver integrated as part of the run-time system. The logic program execution can be
viewed as conditionally expanding the constraint graph, which is then solved by the
constraint system. Constraint logic programming systems have been used to specify and
solve many kinds of configuration problems.

To our knowledge, there has been no work on applying machine learning to help
solve compatible parameter configuration problems. There is a simple form of learning
that has been applied to CSPs called “no good learning”, but it is just a form of caching to
avoid wasting effort during CSP search. There are many potential learning problems
including learning about the constraints relating pairs of variables and learning how to
generalize CSP solutions across similar problems.

Topological Configuration. Two principal approaches have been pursued for
topological configuration problems: refinement and repair. Refinement methods start
with a single ``box'' that represents the entire system to be configured. The box has an
attached formal specification of its desired behavior. Refinement rules analyze the

51

formal specification and replace the single box with two or more new boxes with
specified connections. For example, a small office network might initially be specified as
a box that connects a set of workstations, a file server, and two printers to a DSL line. A
refinement rule might replace this box with a local network (represented as a single box
connected to the various workstations and servers) and a router/NAT box. A second
refinement rule might then refine the network into a wireless access point and a set of
wireless cards (or alternatively, into an Ethernet switch and a set of Ethernet cards and
cables). There has been some work on applying machine learning to learn refinement
rules in the domain of VLSI design (Mitchell et al., 1985).

The repair-based approach to topological configuration starts with an initial
configuration (which typically does not meet the required specifications) and then makes
repairs to transform the configuration until it meets the specifications. For example, an
initial configuration might just connect all computers, printers, and other devices to a
single Ethernet switch, but this switch might be very large and expensive. A repair rule
might replace the switch with a tree of smaller, cheaper switches. Repair-based
approaches make sense when the mismatch between specifications and the current
configuration can be traced to local constraint violations. A repair rule can be written
that ``knows how'' to repair each kind of violation. Repair-based methods have been very
successful in solving scheduling problems (Zweben et al., 1994).

Machine learning approaches to repair-based configuration seek to learn a heuristic
function h(x) that estimates the quality of the best solution reachable from configuration x
by applying repair operators. If h has been learned correctly, then a hill climbing search
that chooses the repair giving the biggest improvement in h will lead us to the global
optimum. One method for learning h is to apply reinforcement learning techniques.
Zhang and Dietterich (1995) learned heuristics for optimizing space shuttle payload
scheduling; Boyan and Moore (2000) learned heuristics for configuring the functional
blocks on integrated circuit chips.

In both refinement and repair-based methods, constraint satisfaction methods are
typically applied to determine good parameter values for the current proposed
configuration. If no satisfactory parameter values can be found, then a proposed
refinement or repair cannot be applied, and some other refinement or repair operator must
be tried. It is possible for the process to reach a dead end, which requires backtracking to
some previous point or restarting the search.

Component Selection and Configuration. The refinement and repair-based methods
described above can also be extended to handle component selection and configuration.
Indeed, our local network configuration example shows how refinement rules can
propose components to include in the configuration. Similar effects can be produced by
repair operators.

Changing Operating Conditions. The methods discussed so far only deal with the
problem of optimizing a configuration under fixed operating conditions. However, in
many applications, including networking, the optimal configuration may need to change
as a result of changes in the mix of traffic and the set of components in the network. This
raises the issue of how data points collected under one operating condition (e.g., one

52

traffic mix) and be used to help optimize performance under a different operating
condition. To our knowledge, there is no existing research on this question.

B4. Open Issues and Research Challenges
Most research in the field of machine learning has been motivated by problems in

pattern recognition, robotics, medical diagnosis, marketing, and related commercial areas.
This accounts for the predominance of supervised classification and reinforcement
learning in current research. The networking domain requires several shifts in focus and
raises several exciting new research challenges, which we discuss in this section.

B4.1 From Supervised to Autonomous Learning
As we have seen above, the dominant problem formulation in machine learning is

supervised learning, where a ``teacher'' labels the training data to indicate the desired
response. While there are some potential applications of supervised learning in KP
applications (e.g., for recognizing known networking misconfigurations and intrusions),
there are many more applications for autonomous learning that does not require a teacher.
In particular, many of the networking applications require looking for anomalies in real-
time data streams, which can be formulated as a combination of unsupervised learning
and learning for interpretation.

Anomaly detection has been studied in machine learning, but usually it has
considered only a fixed level of abstraction. For networking, there can be anomalies at
the level of individual packets, but also at the level of connections, protocols, traffic
flows, and network-wide disturbances. A very interesting challenge for machine learning
is to develop methods that can perform simultaneous unsupervised learning at all of these
levels of abstraction. At very fine levels of detail, network traffic is constantly changing,
and therefore, is constantly novel. The purpose of introducing levels of abstraction is to
hide unimportant variation while exposing important variation.

Anomaly detection at multiple levels of abstraction can exploit regularities at these
multiple levels to ensure that the anomaly is real. A similar idea—multi-scale analysis—
has been exploited in computer vision, where it is reasonable to assume that a real pattern
will be observable at multiple levels of abstraction. This helps reduce false alarms.

B4.2 From Off-Line to On-Line Learning
Most applications of machine learning involve off-line approaches, where data is

collected, manually labeled, and then provided to the learning algorithm in a batch
process. KP applications involve the analysis of real-time data streams, and this poses
new challenges and opportunities for learning algorithms.

In the batch framework, the central constraint is usually the limited amount of
training data. In contrast, in the data stream setting, new data is available at every time
instant, so this problem is less critical. (Nonetheless, even in a large data stream, there
may be relatively few examples of a particular phenomenon of interest, so the problem of
sparse training data is not completely eliminated.)

Moreover, the batch framework assumes that the learning algorithm has essentially
unlimited amounts of computing time to search through the space of possible knowledge
structures. In the on-line setting, the algorithm can afford only a fixed and limited amount
of time to analyze each data point.

53

Finally, in the batch framework, the criterion to be minimized is the probability of
error on new data points. In the on-line framework, it makes more sense to consider the
response time of the system. How many data points does it need to observe before it
detects the relevant patterns? This can be reformulated as a mistake-bounded criterion:
how many mistakes does the system make before it learns to recognize the pattern?

B4.3 From Fixed to Changing Environments
Virtually all machine learning research assumes that the training sample is drawn

from a stationary data source—the distribution of data points and the phenomena to be
learned are not changing with time. This is not true in the networking case. Indeed, the
amount of traffic and the structure of the network are changing continuously. The
amount of traffic continues to rise exponentially and new autonomous systems are added
to the internet almost every day. New networking applications (including worms and
viruses) are introduced frequently.

Research in machine learning needs to formalize new criteria for evaluating of
learning systems in order to measure success in these changing environments. A major
challenge is to evaluate anomaly detection systems, because by definition they are
looking for events that have never been seen before. Hence, they cannot be evaluated on
a fixed set of data points, and measures are needed to quantify the degree of novelty of
new observations.

B4.4 From Centralized to Distributed Learning
Another important way in which KP applications differ from traditional machine

learning problems is that, in the latter, it has usually been possible to collect all of the
training data on a single machine and run the learning algorithm over that data collection.
In contrast, a central aspect of the Knowledge Plane is that it is a distributed system of
sensors, anomaly detectors, diagnostic engines, and self-configuring components.

This raises a whole host of research issues. First, individual anomaly detectors can
form models of their local traffic, but they would benefit from important traffic models
learned elsewhere in the KP. This would help them detect a new event the first time they
see it, rather than having to be exposed multiple times before the event pattern emerges.

Second, some events are inherently distributed patterns of activity that cannot be
detected at an individual network node. The research challenge here is to determine what
kinds of statistics can be collected at the local level and pooled at the regional or global
level to detect these patterns. This may involve a bi-directional process of information
exchange in which local components report summary statistics to larger-scale “think
points”. These think points detect a possible pattern that requires additional data to
verify. So they need to request the local components to gather additional statistics.
Managing this bi-directional statistical reasoning is an entirely new topic for machine
learning research.

B4.5 From Engineered to Constructed Representations
An important ingredient in the success of existing learning systems is the careful

engineering of the attributes describing the training data. This “feature engineering”
process is not well understood, but it involves combining background knowledge of the
application domain with knowledge about learning algorithms. To illustrate this,

54

consider a very simple example in networking arises in intrusion detection: Rather than
describing network traffic using absolute IP addresses, it is better to describe packets
according to whether they share the same or different IP addresses. This ensures that the
learned intrusion detector is not specific to a single IP address but instead looks for
patterns among a set of packets sharing a common address, regardless of the absolute
value of the address.

A critical challenge for machine learning is to develop more automatic ways of
constructing the representations given to the learning algorithms. This requires making
explicit the design principles currently used by human data analysts.

B4.6 From Knowledge-Lean to Knowledge-Rich Learning
An important factor influencing the development of machine learning has been the

relative cost of gathering training data versus building knowledge bases. The
constructing and debugging of knowledge bases is a difficult and time-consuming
process, and the resulting knowledge bases are expensive to maintain. In contrast, there
are many applications where training data can be gathered fairly cheaply. This is why
speech recognition and optical character recognition systems have been constructed
primarily from training data. Any normal adult human is an expert in speech recognition
and optical character recognition, so it is easy for them to label data points to training a
learning system.

There are other domains (including networking), where there are very few experts
available, and their time is perhaps better employed in developing formal representations
of the knowledge they possess about network architectures and configurations. This is
particularly true in the area of network diagnosis and configuration, where experts can
help construct models of network components and prescribe rules for correct
configuration. This raises the challenge of how to combine training data with human-
provided models and rules. This should become an important goal for future machine
learning research.

B4.7 From Direct to Declarative Models
Most machine learning systems seek to induce a function that maps directly from

inputs to outputs and therefore requires little inference at run time. In an optical character
recognition system, for example, the learned recognizer takes a character image as input
and produces the character name as output without any run-time inference. We will call
this “direct knowledge”, because the learned knowledge performs the task directly.
However, as applications become more complex, a simple view of the performance
element as a classifier (or direct decision maker) is no longer adequate. Diagnosis and
configuration tasks require a more complex performance element that makes a sequence
of interacting decisions at run time. These performance elements typically require
declarative knowledge such as “what is the probability that misconfigured gateway will
exhibit symptom X?” or “it is illegal to simultaneously select configuration options Y and
Z.” An important goal for machine learning is to learn these forms of declarative
knowledge (i.e., knowledge that makes minimal assumptions about how it will be used by
the performance element).

Declarative knowledge is easier for people to understand, and it can be more easily
combined with human-provided knowledge as well. Hence, acquiring declarative

55

knowledge is an important challenge for machine learning in the context of the
Knowledge Plane.

B5. Challenges in Methodology and Evaluation
Machine learning research has a long history of experimental evaluation, with some

examples dating back to the 1960s, well before the field was a recognized entity.
However, the modern experimental movement began in the late 1980s, when researchers
realized the need for systematic comparisons (e.g., Kibler & Langley, 1988) and the first
data repository was launched. Other approaches to evaluation, including formal analysis
and comparison to human behavior, are still practiced, but, over the past decade,
experimentation has come to dominate the literature on machine learning, and we will
focus on that approach in our discussions of cognitive networking.

Experimentation involves the systematic variation of independent factors to
understand their impact on dependent variables that describe behavior. Naturally, which
dependent measures are most appropriate depends on the problem being studied. For fault
diagnosis, these might involve the system's ability at infer the correct qualitative
diagnosis, its ability to explain future network behaviors, and the time take to detect and
diagnose problems. Similar measures seem appropriate for responding to intruders and
worms, though these might also include the speed and effectiveness of response. For
studies of configuration, the dependent variables might concern the time taken to
configure a new system and the resulting quality, which may itself require additional
metrics. Similarly, routing studies would focus on the efficiency and effectiveness of the
selected routes.

Note that these behavioral measures have nothing directly to do with learning; they
are the same measures one would use to evaluate a nonlearning system and even the
abilities of a human network manager. Because learning is defined as improvement in
performance, we can only measure the effectiveness of learning in terms of the
performance it aims to improve. Note also that the metrics mentioned above are quite
vague, and they must be made operational before they can be used in experimental
evaluations. In doing so, it may seem natural to use variables associated with one's
selected formulation of the learning problem, such as predictive accuracy for
classification or received reward for action selection. We should resist this temptation
and instead utilize variables that measure directly what is desired from a networking
perspective.

An experimental study also requires the variation of one or more independent factors
to determine their effects on behavior. In general, these can deal with:

• the effects of experience, such as the number of observations available to the
learning system;

• the effects of data characteristics, such as the degree of noise or percentage of
features missing;

• the effects of task characteristics, such as the complexity of a configuration
problem or the number of simultaneous faults;

• the effects of system characteristics, such as the inclusion of specific learning
modules or sensitivity to parameter settings; and

• the effects of background knowledge, such as information about network structure
and bandwidth.

56

Again, which variables are appropriate will depend largely on the networking
problem at hand and the specific learning methods being used. However, a full
understanding of how machine learning can assist cognitive networking will require
studies that examine each of the dimensions above.

Of course, one cannot carry out experiments in the abstract. They require specific
domains and problems that arise within them. To study the role of learning in network
management, we need a number of testbeds that can foster the experimental evaluation of
alternative approaches to learning. At least some of these should involve actual network,
to ensure the collection of realistic data for training and testing the learning methods.
However, these should be complemented with simulated networks, which have the
advantage of letting one systematically vary characteristics of the performance task, the
learning task, and the available data. Langley (1996) has argued that experiments with
both natural and synthetic data are essential, since the former ensures relevance and the
latter let one infer source of power and underlying causes.

Much of the success of the last 15 years of machine learning research can be traced
to the establishment of a collection of data sets at the University of California, Irvine
(Murphy & Aha, 1994, Blake & Merz, 1998; Merz & Murphy, 1996). The UCI data sets
provided a common set of problems on which to evaluate learning algorithms and greatly
encouraged comparative studies. The data sets span a wide range of application problems
ranging from basic science and medicine to optical character recognition and speech
recognition.

Ideally, we want an analog of this repository to enable the careful evaluation of
machine learning in networking domains. However, because the Knowledge Plane
envisions an adaptive network that learns about itself over time, it is important that this
resource not be limited to static data sets, but also include simulated networks that allow
learning methods, and their associated performance elements, to interact with the network
environment in an on-line manner.

Bibliography

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms.

Machine Learning, 6, 37.
Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic

algorithm. The Proceedings of the 12th Annual Conference on Machine Learning
(pp. 38–46). San Francisco, CA: Morgan Kaufmann.

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.
Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

Proc. 11th Annu. Conf. on Comput. Learning Theory (pp. 92–100). ACM Press, New
York, NY.

Boyan, J., & Moore, A. (2000). Learning evaluation functions to improve optimization by
local search. Journal of Machine Learning Research, 1, 77–112.

Boyan, J. A., & Littman, M. L. (1994). Packet routing in dynamically changing networks:
A reinforcement learning approach. Advances in Neural Information Processing
Systems (pp. 671–678). Morgan Kaufmann Publishers, Inc.

Buntine, W. (1996). A guide to the literature on learning probabilistic networks from
data. IEEE Transactions on Knowledge and Data Engineering, 8, 195–210.

Cheeseman, P., Self, M., Kelly, J., Taylor, W., Freeman, D., & Stutz, J. (1988). Bayesian
classification. Proceedings of the Seventh National Conference on Artificial
Intelligence (pp. 607–611). Cambridge, MA: AAAI Press/MIT Press.

Clark, D. (2002). A new vision for network architecture (Technical Report). MIT.
Clark, P., & Niblett, T. (1988). The cn2 induction algorithm. Machine Learning, 3, 261.
Cypher, A. (1993). Watch what I do: Programming by demonstration. Cambridge, MA:

MIT Press.
Drastal, G., Meunier, R., & Raatz, S. (1989). Error correction in constructive induction.

Proceedings of the Sixth International Workshop on Machine Learning (ML 1989),
Cornell University, Ithaca, New York, USA, June 26-27, 1989 (pp. 81–83). San
Francisco: Morgan Kaufmann.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering.
Machine Learning, 2, 139.

Flann, N. S., & Dietterich, T. G. (1989). A study of explanation-based methods for
inductive learning. Machine Learning, 4, 187–226.

Jaffar, J., & Maher, M. J. (1994). Constraint logic programming: A survey. Journal of
Logic Programming, 19/20, 503–581.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4, 237–285.

Kibler, D., & Langley, P. (1988). Machine learning as an experimental science.
Proceedings of the Third European Working Session on Learning (pp. 81–92).
Glasgow: Pittman.

Kumar, V. (1992). Algorithms for constraints satisfaction problems: A survey. The AI
Magazine, 13, 32–44.

Langley, P. (1995). Elements of machine learning. San Francisco: Morgan Kaufmann.

58

Langley, P. (1996). Relevance and insight in experimental studies. IEEE Expert, 11–12.
20

Langley, P. (1999). User modeling in adaptive interfaces. Proceedings of the Seventh
International Conference on User Modeling (pp. 357–370). New York: Springer.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction.
Communications of the ACM, 38, 55–64.

Merz, C. J., & Murphy, P. M. (1996). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
Mitchell, T. M., Mahadevan, S., & Steinberg, L. I. (1985). LEAP: A learning apprentice

for VLSI design. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence (pp. 573–580). Los Angeles, CA: Morgan Kaufmann.

Moore, A., Schneider, J., Boyan, J., & Lee, M. S. (1998). Q2: Memory-based active
learning for optimizing noisy continuous functions. Proceedings of the Fifteenth
International Conference of Machine Learning (pp. 386–394). 340 Pine Street, 6th
Fl., San Francisco, CA 94104: Morgan Kaufmann.

Moriarty, D. E., Schultz, A. C., & Grefenstette, J. J. (1999). Evolutionary algorithms for
reinforcement learning. Journal of Artificial Intelligence Research, 11, 241–276.

Murphy, P., & Aha, D. (1994). UCI repository of machine learning databases [machine-
readable data repository] (Technical Report). University of California, Irvine.

Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and
product optimization using designed experiments. New York, NY: John Wiley &
Sons, Inc.

Partridge, C. (2003). Thoughts on the structure of the knowledge plane (Technical
Report). BBN, Cambridge, MA.

Priebe, C. E., & Marchette, D. J. (1993). Adaptive mixture density estimation. Pattern
Recognition, 26, 771–785.

Quinlan, J. R. (1993). C4.5: Programs for empirical learning. San Francisco, CA:
Morgan Kaufmann.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, J. L. McClelland and the
PDP research group. (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition, volume 1: Foundations. Cambridge, MA: MIT Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly. Proceedings of
the Ninth International Conference on Machine Learning (pp. 385–393). San
Francisco: Morgan Kaufmann.

Selman, B., Kautz, H. A., & Cohen, B. (1993). Local search strategies for satisfiability
testing. Proceedings of the Second DIMACS Challange on Cliques, Coloring, and
Satisfiability. Providence RI.

Sleeman, D., Langley, P., & Mitchell, T. (1982). Learning from solution paths: An
approach to the credit assignment problem. AI Magazine, 3, 48–52.

Stolcke, A., & Omohundro, S. (1994). Inducing probabilistic grammars by bayesian
model merging. Grammatical Inference and Applications: Proceedings of the
Second International Colloquium on Grammatical Inference (pp. 106–118). Springer
Verlag.

59

Sutton, R., & Barto, A. G. (1998). Introduction to reinforcement learning. Cambridge,
MA: MIT Press.

Tonge, F. M. (1963). Summary of a heuristic line balancing procedure. In E. A.
Feigenbaum and J. Feldman (Eds.), Computers and thought, 168–190. Menlo Park,
CA: AAAI Press/MIT Press.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job-shop
scheduling. In 1995 international joint conference on artificial intelligence, 1114–
1120. San Francisco, CA: Morgan Kaufmann.

Zweben, M., Daun, B., & Deale, M. (1994). Scheduling and rescheduling with iterative
repair. In M. Zweben and M. S. Fox (Eds.), Intelligent scheduling, chapter 8, 241–
255. San Francisco, CA: Morgan Kaufmann.

